organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1818-o1819

4-Meth­­oxy-2-[(E)-(phenyl­imino)meth­yl]phenol

aNiğde University, Department of Chemistry, 51200, Niğde, Turkey, bHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey, and cAdnan Menderes University, Department of Chemistry, 09010, Aydın, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 15 August 2008; accepted 20 August 2008; online 23 August 2008)

In the mol­ecule of the title compound, C14H13NO2, the two aromatic rings are oriented at a dihedral angle of 0.78 (20)°; with the exception of two methyl H atoms the mol­ecule is essentially planar. The intra­molecular O—H⋯N hydrogen bond results in the formation of a non-planar, six-membered ring, which adopts a flattened-boat conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules to form parallel networks. There is a C—H⋯π contact between the methyl group and the benzene ring. A ππ contact between the benzene and phenyl rings [centroid–centroid distance = 4.681 (5) Å] is also observed.

Related literature

For general background, see: Hökelek et al. (2004[Hökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803-o805.]); Uçan & Mercimek (2005[Uçan, S. Y. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem. 35, 197-201.]); Uçan et al. (2005[Uçan, S. Y., Uçan, M. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem. 35, 417-421.]); Garg & Kumar (2003[Garg, B. S. & Kumar, D. N. (2003). Spectrochim. Acta Part A, 59, 229-334.]); Mokles & Elzaher (2001[Mokles, M. & Elzaher, A. (2001). J. Chin. Chem. Soc. 48, 153-158.]); Amirnasr et al. (2002[Amirnasr, M., Mahmoudkhani, A. H., Gorji, A., Dehghanpour, S. & Bijanzadeh, H. R. (2002). Polyhedron, 21, 2733-2742.]); Bella et al. (2004[Bella, S. D., Fragala, I., Leonardi, N. & Sortino, S. (2004). Inorg. Chim. Acta, 357, 3865-3870.]); Chandra & Kumar (2005[Chandra, S. & Kumar, U. (2005). Spectrochim. Acta Part A, 61, 219-224.]); Ray et al. (2003[Ray, M. S., Bhattacharya, R., Chaudhuri, S., Righi, L., Bocelli, G., Mukho­padhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617-624.]); Yang et al. (2000[Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599-2604.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2

  • Mr = 227.26

  • Monoclinic, P 21 /c

  • a = 20.935 (2) Å

  • b = 4.7151 (10) Å

  • c = 12.275 (3) Å

  • β = 106.623 (14)°

  • V = 1161.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.971, Tmax = 0.990

  • 1653 measured reflections

  • 1560 independent reflections

  • 521 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 23.1°

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.207

  • S = 0.92

  • 1560 reflections

  • 163 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (5) 1.82 (5) 2.604 (7) 152 (5)
C7—H7⋯O1i 1.03 (5) 2.55 (6) 3.493 (10) 151 (4)
C14—H14A⋯O2ii 0.96 2.57 3.500 (6) 164
C14—H14BCg2iii 0.96 3.27 4.142 (8) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z. Cg2 is the centroid of ring C8–C13.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Few classes of coordination compounds have been the subject of as much attention as Schiff base complexes formed by the condensation of amines with carbonyl derivatives (Hökelek et al., 2004; Uçan & Mercimek, 2005; Uçan et al., 2005). Schiff bases of diamines and their complexes have a variety of applications including biological, clinical and analytical (Garg & Kumar, 2003; Mokles & Elzaher, 2001; Amirnasr et al., 2002). A great number of Schiff base complexes with metals have provoked wide interest because they possess a diverse spectrum of biological and pharmaceutical activities, such as antitumor and antioxidative activities, as well as the inhibition of lipid peroxidation (Bella et al., 2004; Chandra & Kumar, 2005; Ray et al., 2003; Yang et al., 2000). We report here the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1) the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings A (C1—C6) and B (C8—C13) are, of course, planar, and they are oriented at a dihedral angle of 0.78 (20)°; with the exception of two methyl H atoms the molecule is essentially planar. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect thermochromic properties in the title compound as a result of the planarity of the molecule. The intramolecular O—H···N hydrogen bond (Table 1) results in the formation of a non-planar, six-membered ring C (N1/O1/C7/C8/C13/H1); this adopts a flattened-boat conformation having a total puckering amplitude, QT, of 0.381 (3) Å (Cremer & Pople, 1975).

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules to form a network structure (Fig. 2), in which they are arranged parallel to each other (Fig. 3). A C—H···π contact (Table 1) between the methyl group and B ring is observed. A ππ contact between the A and B rings Cg1···Cg2i [symmetry code: (i) x, y - 1, z, where Cg1 and Cg2 are the centroids of the rings A and B, respectively, further stabilizes the structure, with a centroid-centroid distance of 4.681 (5) Å.

Related literature top

For general background, see: Hökelek et al. (2004); Uçan & Mercimek (2005); Uçan et al. (2005); Garg & Kumar (2003); Mokles & Elzaher (2001); Amirnasr et al. (2002); Bella et al. (2004); Chandra & Kumar (2005); Ray et al. (2003); Yang et al. (2000). For bond-length data, see: Allen et al. (1987). For ring conformation puckering parameters, see: Cremer & Pople (1975). Cg2 is the centroid of ring C8–C13.

Experimental top

The title compound was prepared by the usual condensation method. Aniline (0.931 g, 10 mmol) was dissolved in methanol (10 ml) and added to a solution of 4-methoxysalicylaldehyde (3.042 g, 20 mmol) in methanol (10 ml). The reaction mixture was stirred for 3 h and left overnight at 298 K. The resulting precipitate was filtered and washed with cold ethanol. It was recrystalized from dichloromethane, dried in a vacuum desiccator and the purity was checked by TLC (yield; 3.854 g, 84%, m.p. 341 K).

Refinement top

H1 (attached to O1) and H7 (attached to C7) were located in difference syntheses and refined isotropically [O—H = 0.86 (5) Å and Uiso(H) = 0.05 (3) Å2; C—H = 1.03 (5) Å and Uiso(H) = 0.039 (18) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms. A restraint on the O—H bond was applied.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a double dashed line.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound, showing the formation of the network structure. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C14H13NO2F(000) = 480
Mr = 227.26Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 20.935 (2) Åθ = 5.2–17.4°
b = 4.7151 (10) ŵ = 0.09 mm1
c = 12.276 (3) ÅT = 294 K
β = 106.623 (14)°Rod-shaped, orange
V = 1161.1 (4) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
521 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 23.1°, θmin = 3.3°
non–profiled ω scansh = 2221
Absorption correction: ψ scan
(North et al., 1968)
k = 05
Tmin = 0.971, Tmax = 0.990l = 013
1653 measured reflections3 standard reflections every 120 min
1560 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0803P)2]
where P = (Fo2 + 2Fc2)/3
1560 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C14H13NO2V = 1161.1 (4) Å3
Mr = 227.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.935 (2) ŵ = 0.09 mm1
b = 4.7151 (10) ÅT = 294 K
c = 12.276 (3) Å0.40 × 0.20 × 0.10 mm
β = 106.623 (14)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
521 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.048
Tmin = 0.971, Tmax = 0.990θmax = 23.1°
1653 measured reflections3 standard reflections every 120 min
1560 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.0641 restraint
wR(F2) = 0.207H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.20 e Å3
1560 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7505 (3)0.7726 (12)1.0014 (4)0.0656 (17)
H10.725 (3)0.879 (11)0.951 (4)0.05 (3)*
O20.9196 (2)0.2785 (11)0.7864 (4)0.0649 (16)
N10.7019 (3)1.0588 (12)0.8146 (5)0.0452 (17)
C10.6566 (3)1.2627 (15)0.7496 (6)0.043 (2)
C20.6507 (4)1.3416 (17)0.6390 (7)0.065 (3)
H20.67921.26220.60150.078*
C30.6041 (4)1.5335 (18)0.5837 (7)0.079 (3)
H30.60031.57890.50830.095*
C40.5626 (4)1.6608 (17)0.6377 (8)0.066 (3)
H40.53141.79390.59970.079*
C50.5677 (4)1.5897 (17)0.7486 (8)0.064 (2)
H50.53991.67440.78600.076*
C60.6144 (4)1.3919 (15)0.8039 (6)0.055 (2)
H60.61771.34430.87890.066*
C70.7415 (4)0.9240 (16)0.7710 (7)0.043 (2)
H70.742 (2)0.943 (11)0.688 (5)0.039 (18)*
C80.7886 (3)0.7208 (15)0.8350 (6)0.0397 (19)
C90.8325 (3)0.5868 (15)0.7860 (6)0.049 (2)
H90.83060.62800.71110.059*
C100.8787 (4)0.3956 (16)0.8450 (7)0.048 (2)
C110.8823 (4)0.3314 (16)0.9555 (7)0.057 (2)
H110.91390.20280.99620.068*
C120.8383 (4)0.4607 (17)1.0059 (6)0.056 (2)
H120.84020.41591.08050.067*
C130.7918 (4)0.6544 (17)0.9470 (7)0.049 (2)
C140.9735 (3)0.1055 (17)0.8484 (7)0.077 (3)
H14A0.99780.03750.79820.115*
H14B0.95630.05270.88050.115*
H14C1.00260.21500.90820.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.085 (4)0.070 (4)0.045 (4)0.028 (4)0.023 (3)0.010 (4)
O20.062 (4)0.072 (4)0.064 (4)0.026 (3)0.025 (3)0.010 (3)
N10.058 (4)0.033 (4)0.043 (4)0.003 (3)0.012 (4)0.001 (3)
C10.047 (5)0.032 (5)0.046 (5)0.010 (4)0.005 (4)0.000 (5)
C20.067 (6)0.069 (7)0.055 (6)0.028 (5)0.011 (5)0.004 (5)
C30.089 (7)0.074 (7)0.063 (6)0.034 (6)0.005 (6)0.015 (6)
C40.071 (7)0.038 (6)0.072 (7)0.007 (5)0.008 (5)0.003 (5)
C50.052 (6)0.048 (6)0.092 (8)0.001 (5)0.023 (5)0.006 (5)
C60.062 (5)0.043 (5)0.068 (6)0.006 (5)0.031 (5)0.006 (5)
C70.046 (5)0.041 (5)0.040 (5)0.003 (4)0.008 (4)0.002 (5)
C80.046 (5)0.033 (5)0.036 (5)0.003 (4)0.007 (4)0.003 (4)
C90.059 (5)0.043 (5)0.040 (5)0.002 (5)0.008 (4)0.001 (4)
C100.052 (5)0.037 (5)0.053 (6)0.001 (4)0.014 (4)0.010 (5)
C110.058 (5)0.052 (6)0.058 (6)0.013 (5)0.014 (5)0.022 (5)
C120.068 (6)0.062 (6)0.034 (5)0.000 (5)0.010 (4)0.006 (5)
C130.054 (5)0.048 (6)0.046 (5)0.002 (4)0.014 (4)0.005 (5)
C140.064 (6)0.074 (6)0.093 (7)0.034 (5)0.025 (5)0.011 (6)
Geometric parameters (Å, º) top
O1—C131.355 (8)C6—H60.9300
O1—H10.86 (5)C7—C81.437 (9)
O2—C101.381 (8)C7—H71.03 (5)
O2—C141.423 (7)C8—C131.393 (8)
N1—C11.424 (8)C9—C81.387 (9)
N1—C71.277 (8)C9—C101.368 (8)
C1—C21.379 (9)C9—H90.9300
C2—C31.362 (9)C11—C101.370 (8)
C2—H20.9300C11—C121.390 (9)
C3—H30.9300C11—H110.9300
C4—C31.372 (10)C12—C131.378 (9)
C4—C51.376 (9)C12—H120.9300
C4—H40.9300C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C11.390 (9)C14—H14C0.9600
C6—C51.381 (9)
C13—O1—H1104 (5)C9—C8—C13118.3 (7)
C10—O2—C14117.7 (6)C9—C8—C7120.2 (7)
C7—N1—C1120.6 (7)C13—C8—C7121.5 (7)
C2—C1—C6117.7 (7)C10—C9—C8121.8 (7)
C2—C1—N1126.2 (7)C10—C9—H9119.1
C6—C1—N1116.1 (7)C8—C9—H9119.1
C3—C2—C1121.3 (8)C9—C10—C11120.1 (8)
C3—C2—H2119.3C9—C10—O2115.9 (7)
C1—C2—H2119.3C11—C10—O2124.0 (7)
C2—C3—C4120.8 (9)C10—C11—C12119.2 (7)
C2—C3—H3119.6C10—C11—H11120.4
C4—C3—H3119.6C12—C11—H11120.4
C3—C4—C5119.4 (9)C13—C12—C11121.0 (8)
C3—C4—H4120.3C13—C12—H12119.5
C5—C4—H4120.3C11—C12—H12119.5
C4—C5—C6119.7 (8)O1—C13—C12117.9 (8)
C4—C5—H5120.2O1—C13—C8122.5 (7)
C6—C5—H5120.2C12—C13—C8119.6 (8)
C5—C6—C1121.2 (8)O2—C14—H14A109.5
C5—C6—H6119.4O2—C14—H14B109.5
C1—C6—H6119.4H14A—C14—H14B109.5
N1—C7—C8121.9 (8)O2—C14—H14C109.5
N1—C7—H7125 (3)H14A—C14—H14C109.5
C8—C7—H7113 (3)H14B—C14—H14C109.5
C7—N1—C1—C21.5 (10)N1—C7—C8—C132.1 (10)
C7—N1—C1—C6178.3 (7)C9—C8—C13—O1179.3 (7)
C1—N1—C7—C8178.8 (6)C7—C8—C13—O11.1 (11)
C14—O2—C10—C9172.5 (6)C9—C8—C13—C120.4 (10)
C14—O2—C10—C117.3 (10)C7—C8—C13—C12179.2 (7)
N1—C1—C2—C3178.0 (7)C10—C9—C8—C130.6 (10)
C6—C1—C2—C31.8 (11)C10—C9—C8—C7179.0 (6)
C1—C2—C3—C41.9 (12)C8—C9—C10—C110.1 (11)
C5—C4—C3—C21.0 (12)C8—C9—C10—O2179.7 (6)
C3—C4—C5—C60.1 (12)C12—C11—C10—C90.6 (11)
C5—C6—C1—C20.8 (10)C12—C11—C10—O2179.6 (7)
C5—C6—C1—N1179.0 (6)C10—C11—C12—C130.8 (11)
C1—C6—C5—C40.0 (11)C11—C12—C13—O1179.9 (7)
N1—C7—C8—C9177.5 (7)C11—C12—C13—C80.4 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (5)1.82 (5)2.604 (7)152 (5)
C7—H7···O1i1.03 (5)2.55 (6)3.493 (10)151 (4)
C14—H14A···O2ii0.962.573.500 (6)164
C14—H14B···Cg2iii0.963.274.142 (8)152
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)20.935 (2), 4.7151 (10), 12.276 (3)
β (°) 106.623 (14)
V3)1161.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.971, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
1653, 1560, 521
Rint0.048
θmax (°)23.1
(sin θ/λ)max1)0.552
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.207, 0.92
No. of reflections1560
No. of parameters163
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX publication routines (Farrugia, 1999) and PLATON.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (5)1.82 (5)2.604 (7)152 (5)
C7—H7···O1i1.03 (5)2.55 (6)3.493 (10)151 (4)
C14—H14A···O2ii0.962.573.500 (6)164
C14—H14B···Cg2iii0.963.274.142 (8)152
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y1/2, z+3/2; (iii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmirnasr, M., Mahmoudkhani, A. H., Gorji, A., Dehghanpour, S. & Bijanzadeh, H. R. (2002). Polyhedron, 21, 2733–2742.  Web of Science CSD CrossRef CAS Google Scholar
First citationBella, S. D., Fragala, I., Leonardi, N. & Sortino, S. (2004). Inorg. Chim. Acta, 357, 3865–3870.  Web of Science CSD CrossRef Google Scholar
First citationChandra, S. & Kumar, U. (2005). Spectrochim. Acta Part A, 61, 219–224.  CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarg, B. S. & Kumar, D. N. (2003). Spectrochim. Acta Part A, 59, 229–334.  CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHökelek, T., Bilge, S., Demiriz, Ş., Özgüç, B. & Kılıç, Z. (2004). Acta Cryst. C60, o803–o805.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMokles, M. & Elzaher, A. (2001). J. Chin. Chem. Soc. 48, 153–158.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRay, M. S., Bhattacharya, R., Chaudhuri, S., Righi, L., Bocelli, G., Mukho­padhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUçan, S. Y. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem. 35, 197–201.  Google Scholar
First citationUçan, S. Y., Uçan, M. & Mercimek, B. (2005). Synth. React. Inorg. Met.-Org. Nanometal Chem. 35, 417–421.  Google Scholar
First citationYang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1818-o1819
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds