organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1814-o1815

(E)-3-(2,4-Di­chloro­phen­yl)-1-(2-thien­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Physics, KLE Society's KLE Institute of Technology, Gokul Road, Hubli 590 030, India, cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and dCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 2 August 2008; accepted 18 August 2008; online 23 August 2008)

In the title chalcone derivative, C13H8Cl2OS, the prop-2-en-1-one unit and the thio­phene and 2,4-dichloro­phenyl rings are each essentially planar. The inter­planar angle between the thio­phene and 2,4-dichloro­phenyl rings is 19.87 (6)°. Weak intra­molecular C—H⋯O and C—H⋯Cl inter­actions involving the prop-2-en-1-one unit generate an S(5)S(5) ring motif. In the crystal structure, mol­ecules are linked into head-to-tail zigzag chains along the a axis and adjacent chains are cross-linked. These cross-linked chains are arranged into sheets parallel to the ab plane. The crystal structure is stabilized by weak C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions. A ππ inter­action was also observed with a centroid–centroid distance of 3.6845 (6) Å.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see, for example: Fun et al. (2008a[Fun, H.-K., Jebas, S. R., Patil, P. S. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1510-o1511.],b[Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008b). Acta Cryst. E64, o1720-o1721.]). For background on the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State. 41, 1914-1917.]); Chopra et al. (2007[Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704-o710.]); Goto et al. (1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth. 108, 688-698.]); Gu et al. (2008a[Gu, B., Ji, W. & Huang, X.-Q. (2008a). Appl. Optics. 47, 1187-1192.],b[Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008b). J. Appl. Phys. 103, 103511-1-103511-6.],c[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008c). Appl. Phys. Lett. 92, 091118-1-091118-3.]); Patil et al. (2007a[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007a). J. Cryst. Growth. 303, 520-524.],b[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497-o2498.],c[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007c). Acta Cryst. E63, o2122-o2123.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth. 295, 54-59.]); Wang et al. (2004[Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696-o698.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl2OS

  • Mr = 283.16

  • Monoclinic, P 21 /c

  • a = 9.5701 (4) Å

  • b = 13.9544 (6) Å

  • c = 10.4748 (4) Å

  • β = 118.735 (3)°

  • V = 1226.59 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 100.0 (1) K

  • 0.58 × 0.24 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.695, Tmax = 0.919

  • 41878 measured reflections

  • 4435 independent reflections

  • 3831 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.082

  • S = 1.06

  • 4435 reflections

  • 162 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O1i 0.93 2.52 3.4512 (17) 175
C7—H7A⋯Cl1 0.93 2.68 3.0573 (11) 105
C7—H7A⋯O1 0.93 2.48 2.8116 (17) 101
C10—H10ACg1ii 0.93 3.33 3.8233 (13) 115
C12—H12ACg1iii 0.93 2.87 3.6907 (13) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the S1/C1–C4 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In the last decades, the second-order nonlinear optical properties of chalcone derivatives have been widely investigated due to their possible applications in a variety of optoelectronic and photonic applications (Agrinskaya et al., 1999; Goto et al., 1991; Patil et al., 2007a, b, c; Sarojini et al., 2006; Wang et al., 2004). These derivatives also exhibit the optical limiting property which is a requirement of protecting the human eye or artificial optical sensor from damaging high-energy lasers (Gu et al., 2008a, b, c). In our continuing systematic study on chalcone derivatives, we report here the structure of the title compound.

In the structure of the title chalcone derivative (Fig. 1), bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Fun et al., 2008a, b). The prop-2-en-1-one unit (O1/C5–C7), the thiophene ring and the 2,4-dichlorophenyl ring are individually essentially planar, with maximum deviations of 0.003 (1), 0.024 (1), -0.007 (1)Å for atom C4, C7 and C11, respectively. The total molecule is slightly twisted as indicated by the dihedral angles between the least-squares plane through the prop-2-en-1-one unit with the thiophene and 2,4-dichlorophenyl rings being 7.89 (7)° and 22.45 (7)°, and that between the thiophene and 2,4-dichlorophenyl rings being 19.87 (6)°.

In the structure, both weak intramolecular C7—H7A···O1 and C7—H7A···Cl1 interactions (Table 1) generate S(5) ring motifs (Bernstein et al., 1995). In the crystal structure (Fig. 2) the molecules are linked in head-to-tail zigzag chains along the a-axis by weak C—H···Cl interactions and the adjacent chains were cross-linked by weak C—H···O interactions. These cross-linked chains are arranged into sheets parallel to the ab plane. The crystal is stabilized by weak C—H···O, C—H···Cl and C—H···π interactions (Table 1), π···π interaction was also observed with the Cg2···Cg2 distance of 3.6845 (6)Å (symmetry code: -x,1 - y, 1 - z); Cg1 and Cg2 are the centroids of S1/C1–C4 and C8–C13 rings.

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Fun et al. (2008a,b). For background on the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999); Chopra et al. (2007); Goto et al. (1991); Gu et al. (2008a,b,c); Patil et al. (2007a,b,c); Sarojini et al. (2006); Wang et al. (2004). Cg1 is the centroid of the S1/C1–C4 ring.

Experimental top

The title compound was synthesized by the condensation of 2,4-dichlorobenzaldehyde (0.01 mol, 1.75 g) with 2-acetylthiophene (0.01 mol, 1.07 ml) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (6 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. Needle colorless single crystals of the title compound suitable for X-Ray structure determination were grown by slow evaporation of the methanol solution at room temperature.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.93Å, Uiso=1.2Ueq(C) for vinylic and aromatic H atoms. The highest residual electron density peak is located at 0.70Å from C10 and the deepest hole is located at 0.51Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Weak intramolecular C—H···O and C—H···Cl interactions are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis showing the cross-linked chains approximately along the a axis. Hydrogen bonds are drawn as dashed lines.
(E)-3-(2,4-Dichlorophenyl)-1-(2-thienyl)prop-2-en-1-one top
Crystal data top
C13H8Cl2OSF(000) = 576
Mr = 283.16Dx = 1.533 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4435 reflections
a = 9.5701 (4) Åθ = 2.4–32.5°
b = 13.9544 (6) ŵ = 0.68 mm1
c = 10.4748 (4) ÅT = 100 K
β = 118.735 (3)°Needle, colorless
V = 1226.59 (9) Å30.58 × 0.24 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
4435 independent reflections
Radiation source: fine-focus sealed tube3831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.33 pixels mm-1θmax = 32.5°, θmin = 2.4°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2121
Tmin = 0.695, Tmax = 0.919l = 1515
41878 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.4876P]
where P = (Fo2 + 2Fc2)/3
4435 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H8Cl2OSV = 1226.59 (9) Å3
Mr = 283.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5701 (4) ŵ = 0.68 mm1
b = 13.9544 (6) ÅT = 100 K
c = 10.4748 (4) Å0.58 × 0.24 × 0.13 mm
β = 118.735 (3)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
4435 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3831 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.919Rint = 0.031
41878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.07Δρmax = 0.60 e Å3
4435 reflectionsΔρmin = 0.28 e Å3
162 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05796 (3)0.558919 (18)0.18442 (3)0.01990 (7)
Cl20.34903 (3)0.43921 (2)0.48214 (3)0.02181 (7)
S10.55248 (3)0.18039 (2)0.20853 (3)0.02097 (7)
O10.30678 (11)0.32994 (6)0.13125 (9)0.02122 (16)
C10.64865 (14)0.08866 (9)0.32542 (13)0.0239 (2)
H1A0.72450.05040.31620.042 (5)*
C20.60409 (14)0.07946 (9)0.43128 (13)0.0222 (2)
H2A0.64480.03310.50390.030 (4)*
C30.48923 (13)0.14851 (8)0.41751 (12)0.01776 (19)
H3A0.44620.15310.48020.025 (4)*
C40.44866 (12)0.20851 (7)0.29930 (11)0.01483 (17)
C50.32870 (12)0.28469 (7)0.24030 (11)0.01551 (18)
C60.23178 (13)0.30140 (8)0.31373 (11)0.01662 (18)
H6A0.25320.26700.39720.033 (4)*
C70.11366 (13)0.36566 (7)0.26054 (12)0.01658 (18)
H7A0.09950.40120.18000.022 (4)*
C80.00490 (12)0.38454 (7)0.31897 (11)0.01508 (17)
C90.01998 (13)0.31711 (8)0.40561 (12)0.01814 (19)
H9A0.03730.26010.42920.032 (4)*
C100.12712 (13)0.33288 (8)0.45700 (12)0.01822 (19)
H10A0.14180.28720.51410.030 (4)*
C110.21239 (12)0.41837 (8)0.42150 (12)0.01651 (18)
C120.19070 (12)0.48797 (7)0.33822 (11)0.01626 (18)
H12A0.24720.54530.31640.023 (4)*
C130.08277 (12)0.47006 (7)0.28828 (11)0.01535 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02152 (13)0.01786 (12)0.02316 (13)0.00278 (8)0.01301 (10)0.00674 (9)
Cl20.02120 (13)0.02533 (13)0.02547 (14)0.00247 (9)0.01647 (11)0.00112 (10)
S10.02269 (14)0.02431 (14)0.02117 (13)0.00481 (10)0.01474 (11)0.00138 (10)
O10.0269 (4)0.0218 (4)0.0201 (4)0.0047 (3)0.0155 (3)0.0046 (3)
C10.0216 (5)0.0255 (5)0.0248 (5)0.0084 (4)0.0113 (4)0.0015 (4)
C20.0221 (5)0.0233 (5)0.0201 (5)0.0049 (4)0.0092 (4)0.0019 (4)
C30.0195 (5)0.0187 (4)0.0167 (4)0.0009 (4)0.0100 (4)0.0006 (4)
C40.0159 (4)0.0156 (4)0.0155 (4)0.0001 (3)0.0096 (4)0.0013 (3)
C50.0176 (4)0.0152 (4)0.0154 (4)0.0004 (3)0.0093 (4)0.0019 (3)
C60.0191 (5)0.0178 (4)0.0159 (4)0.0006 (4)0.0107 (4)0.0001 (3)
C70.0191 (4)0.0160 (4)0.0178 (4)0.0001 (3)0.0114 (4)0.0007 (3)
C80.0162 (4)0.0147 (4)0.0154 (4)0.0005 (3)0.0084 (4)0.0001 (3)
C90.0211 (5)0.0148 (4)0.0216 (5)0.0023 (3)0.0127 (4)0.0018 (4)
C100.0215 (5)0.0162 (4)0.0208 (5)0.0005 (4)0.0133 (4)0.0016 (4)
C110.0160 (4)0.0187 (4)0.0170 (4)0.0000 (3)0.0097 (4)0.0015 (3)
C120.0155 (4)0.0162 (4)0.0173 (4)0.0018 (3)0.0081 (4)0.0006 (3)
C130.0158 (4)0.0148 (4)0.0154 (4)0.0003 (3)0.0075 (3)0.0016 (3)
Geometric parameters (Å, º) top
Cl1—C131.7396 (10)C6—C71.3367 (15)
Cl2—C111.7310 (11)C6—H6A0.9300
S1—C11.7033 (12)C7—C81.4629 (14)
S1—C41.7186 (10)C7—H7A0.9300
O1—C51.2317 (13)C8—C131.4042 (14)
C1—C21.3720 (17)C8—C91.4048 (15)
C1—H1A0.9425C9—C101.3858 (16)
C2—C31.4160 (16)C9—H9A0.9300
C2—H2A0.9300C10—C111.3912 (15)
C3—C41.3865 (15)C10—H10A0.9301
C3—H3A0.9302C11—C121.3862 (15)
C4—C51.4656 (14)C12—C131.3866 (15)
C5—C61.4806 (14)C12—H12A0.9299
C1—S1—C491.72 (6)C6—C7—H7A117.4
C2—C1—S1112.39 (9)C8—C7—H7A117.4
C2—C1—H1A125.7C13—C8—C9116.67 (9)
S1—C1—H1A121.9C13—C8—C7121.62 (9)
C1—C2—C3112.43 (11)C9—C8—C7121.69 (9)
C1—C2—H2A123.8C10—C9—C8122.10 (10)
C3—C2—H2A123.8C10—C9—H9A119.0
C4—C3—C2111.85 (10)C8—C9—H9A118.9
C4—C3—H3A124.1C9—C10—C11118.74 (10)
C2—C3—H3A124.1C9—C10—H10A120.6
C3—C4—C5129.85 (9)C11—C10—H10A120.6
C3—C4—S1111.60 (8)C12—C11—C10121.53 (10)
C5—C4—S1118.44 (8)C12—C11—Cl2118.77 (8)
O1—C5—C4120.84 (9)C10—C11—Cl2119.70 (8)
O1—C5—C6122.07 (10)C11—C12—C13118.37 (10)
C4—C5—C6117.04 (9)C11—C12—H12A120.8
C7—C6—C5120.30 (10)C13—C12—H12A120.8
C7—C6—H6A119.9C12—C13—C8122.57 (9)
C5—C6—H6A119.8C12—C13—Cl1117.25 (8)
C6—C7—C8125.15 (10)C8—C13—Cl1120.18 (8)
C4—S1—C1—C20.23 (10)C6—C7—C8—C921.13 (17)
S1—C1—C2—C30.06 (14)C13—C8—C9—C100.92 (16)
C1—C2—C3—C40.42 (15)C7—C8—C9—C10177.58 (10)
C2—C3—C4—C5175.55 (11)C8—C9—C10—C110.07 (17)
C2—C3—C4—S10.59 (12)C9—C10—C11—C120.93 (17)
C1—S1—C4—C30.47 (9)C9—C10—C11—Cl2179.10 (9)
C1—S1—C4—C5176.16 (9)C10—C11—C12—C130.99 (16)
C3—C4—C5—O1178.54 (11)Cl2—C11—C12—C13179.04 (8)
S1—C4—C5—O12.62 (14)C11—C12—C13—C80.07 (16)
C3—C4—C5—C61.06 (16)C11—C12—C13—Cl1179.86 (8)
S1—C4—C5—C6174.85 (7)C9—C8—C13—C120.86 (15)
O1—C5—C6—C71.53 (16)C7—C8—C13—C12177.65 (10)
C4—C5—C6—C7175.91 (10)C9—C8—C13—Cl1178.93 (8)
C5—C6—C7—C8176.55 (10)C7—C8—C13—Cl12.57 (14)
C6—C7—C8—C13160.45 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.523.4512 (17)175
C7—H7A···Cl10.932.683.0573 (11)105
C7—H7A···O10.932.482.8116 (17)101
C10—H10A···Cg1ii0.933.333.8233 (13)115
C12—H12A···Cg1iii0.932.873.6907 (13)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H8Cl2OS
Mr283.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5701 (4), 13.9544 (6), 10.4748 (4)
β (°) 118.735 (3)
V3)1226.59 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.58 × 0.24 × 0.13
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.695, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
41878, 4435, 3831
Rint0.031
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.07
No. of reflections4435
No. of parameters162
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O1i0.932.52383.4512 (17)175
C7—H7A···Cl10.932.68033.0573 (11)105
C7—H7A···O10.932.48162.8116 (17)101
C10—H10A···Cg1ii0.933.33103.8233 (13)115
C12—H12A···Cg1iii0.932.86903.6907 (13)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z+1/2.
 

Footnotes

Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

This work is supported by the Department of Science and Technology (DST), Government of India under grant No. SR/S2/LOP-17/2006. IAR and HKF thank Universiti Sains Malaysia and the Malaysian Government for the FRGS research grant No. 203/PFIZIK/671064. SC thanks Prince of Songkla University for generous support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State. 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2008b). Acta Cryst. E64, o1720–o1721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Patil, P. S. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1510–o1511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth. 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationGu, B., Ji, W. & Huang, X.-Q. (2008a). Appl. Optics. 47, 1187–1192.  Web of Science CrossRef Google Scholar
First citationGu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008b). J. Appl. Phys. 103, 103511-1–103511-6.  Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008c). Appl. Phys. Lett. 92, 091118-1–091118-3.  Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007a). J. Cryst. Growth. 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007c). Acta Cryst. E63, o2122–o2123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth. 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1814-o1815
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds