organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Bis[1-acetyl-5-(4-chloro­phen­yl)-4,5-di­hydro-1H-pyrazol-3-yl]-2,6-di­methyl­pyridine

aDepartment of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China, and bSchool of Materials Science and Engineering, Shanghai University, Shanghai 200072, People's Republic of China
*Correspondence e-mail: minzhang1@yeah.net

(Received 25 July 2008; accepted 28 July 2008; online 6 August 2008)

The title compound, C29H27Cl2N5O2, contains a central pyridine ring and two functionalized pyrazoline rings. The pyridine ring and the two attached pyrazoline rings are nearly coplanar, whereas the terminal chloro­phenyl rings are nearly perpendicular to the attached pyrazoline rings [dihedral angles = 86.78 (1) and 77.70 (1)°]. Mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonding.

Related literature

For general background, see: Ahn et al. (2004[Ahn, J. H., Kim, H. M., Jung, S. H., Kang, S. K., Kim, K. R., Rhee, S. D., Yang, S. D., Cheon, H. G. & Kim, S. S. (2004). Bioorg. Med. Chem. Lett. 14, 4461-4465.]); Palaska et al. (1996[Palaska, E., Erol, D. & Demirdamar, R. (1996). Eur. J. Med. Chem. 31, 43-47.]); Yar et al. (2006[Yar, M. S., Siddiqui, A. A. & Ali, M. A. (2006). Bioorg. Med. Chem. Lett. 16, 4571-4574.])

[Scheme 1]

Experimental

Crystal data
  • C29H27Cl2N5O2

  • Mr = 548.46

  • Monoclinic, P 21

  • a = 12.345 (3) Å

  • b = 9.6763 (19) Å

  • c = 13.268 (3) Å

  • β = 115.00 (3)°

  • V = 1436.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.950

  • 7509 measured reflections

  • 3736 independent reflections

  • 2520 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.077

  • S = 0.91

  • 3736 reflections

  • 344 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1031 Friedel pairs

  • Flack parameter: 0.06 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O2i 0.99 2.59 3.358 (3) 135
C17—H17A⋯O2ii 0.95 2.50 3.359 (4) 151
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) x, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The pyrazoline derivatives are well known nitrogen-containing heterocyclic compounds which show various biological activities and pharmacological properties (Palaska et al., 1996). Some of them can be anti-bacterial and anti-fungal, others are anti-diabetic, anti-inflammatory and also active against many Mycobacterias (Ahn et al., 2004; Yar et al., 2006). As the stereochemistry may be an important modulator of biological activity, the crystal structure of the title compound has been determined.

The molecular structure is shown in Fig. 1. There are two chlorophenyl rings bonded with two pyrazoline rings in cis-arrangement, and these two pyrazoline rings are further bonded with the same pyridine ring. The central pyridine ring and two attached pyrazoline rings are nearly coplanar with the dihedral angles of 1.32 (2) and 4.88 (2)°, whereas the dihedral angles between each chlorophenyl plane and the attached pyrazoline planes are 86.78 (1) and 77.70 (1)°.

In the crystal structure, there are weak intermolecular C—H···O hydrogen bonding (Table 1 and Fig. 2).

Related literature top

For general background, see: Ahn et al. (2004); Palaska et al. (1996); Yar et al. (2006)

Experimental top

2,6-Dimethyl-3,5-di-[3-(4-chloro-phenyl)-acryloyl-pyridine (1 mmol, 0.436 g) and 85% hydrazine hydrate solution (4 mmol, 0.235 g) were dissolved in 5 ml of acetic acid solution. The solution was refluxed for 8 h, and allowed to cool to room temperature. The reaction mixture was poured into crushed ice, then neutralized with dilute sodium hydroxide solution. The solid separated was filtered off, washed with water, dried and recrystallized from ethyl acetate to give a colorless compound in a yield of of 40%. Single crystals suitable for X-ray analysis were obtained form tetrahydrofuran at room temperature.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93–0.99 Å, and included in the final cycles of refinement using a riding model, Uiso(H) = 1.5Ueq(C) (for methyl groups) or 1.2Ueq(C) (for others). There is a void of 56 Å3 in the crystal structure, but no solvent molecule could be located reasonably.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of compound (I), Hydrogen bonding is indicated by dashed lines.
3,5-Bis[1-acetyl-5-(4-chlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl]- 2,6-dimethylpyridine top
Crystal data top
C29H27Cl2N5O2F(000) = 572
Mr = 548.46Dx = 1.268 Mg m3
Monoclinic, P21Melting point = 547–549 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 12.345 (3) ÅCell parameters from 2029 reflections
b = 9.6763 (19) Åθ = 2.7–20.6°
c = 13.268 (3) ŵ = 0.26 mm1
β = 115.00 (3)°T = 296 K
V = 1436.4 (5) Å3Block, colorless
Z = 20.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3736 independent reflections
Radiation source: fine-focus sealed tube2520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.926, Tmax = 0.950k = 511
7509 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0287P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3736 reflectionsΔρmax = 0.14 e Å3
344 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1031 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C29H27Cl2N5O2V = 1436.4 (5) Å3
Mr = 548.46Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.345 (3) ŵ = 0.26 mm1
b = 9.6763 (19) ÅT = 296 K
c = 13.268 (3) Å0.30 × 0.20 × 0.20 mm
β = 115.00 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3736 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2520 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.950Rint = 0.027
7509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.14 e Å3
S = 0.91Δρmin = 0.15 e Å3
3736 reflectionsAbsolute structure: Flack (1983), 1031 Friedel pairs
344 parametersAbsolute structure parameter: 0.06 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.82566 (10)0.19017 (14)0.84787 (9)0.1067 (4)
Cl20.93108 (9)0.23669 (14)0.26803 (10)0.1163 (4)
N40.3040 (2)0.0470 (3)0.03488 (19)0.0535 (7)
O20.4646 (2)0.0216 (3)0.19685 (16)0.0699 (7)
N20.2426 (2)0.4329 (3)0.4064 (2)0.0591 (7)
C30.3001 (3)0.2513 (3)0.1935 (2)0.0518 (8)
H3A0.37720.29010.21410.062*
C20.2559 (3)0.1586 (3)0.1053 (2)0.0472 (8)
N50.3995 (2)0.0474 (3)0.06575 (19)0.0520 (7)
N10.0772 (2)0.1372 (3)0.1322 (2)0.0595 (7)
C80.2922 (3)0.3870 (3)0.3447 (2)0.0511 (8)
N30.3251 (2)0.5240 (3)0.4848 (2)0.0588 (7)
C210.5046 (3)0.1276 (3)0.0106 (2)0.0498 (8)
H21A0.52600.19900.03240.060*
C10.1420 (3)0.1018 (3)0.0771 (2)0.0533 (8)
C40.2348 (3)0.2885 (3)0.2519 (2)0.0501 (8)
C190.3333 (3)0.1291 (3)0.0493 (2)0.0474 (8)
C200.4534 (2)0.1978 (3)0.0844 (2)0.0503 (8)
H20A0.50480.18140.16410.060*
H20B0.44470.29860.07050.060*
C130.5391 (3)0.4494 (3)0.5838 (3)0.0547 (8)
C240.6109 (2)0.0369 (3)0.0729 (2)0.0475 (8)
O10.3715 (2)0.6813 (3)0.6201 (2)0.0844 (8)
C70.0821 (3)0.0002 (4)0.0160 (3)0.0701 (10)
H7A0.00720.03210.01500.105*
H7B0.13510.07930.00610.105*
H7C0.06500.04460.08740.105*
C290.6086 (3)0.0608 (4)0.1481 (3)0.0580 (9)
H29A0.53790.07060.15930.070*
C110.2948 (4)0.6055 (4)0.5529 (3)0.0677 (10)
C90.4157 (3)0.4450 (3)0.3751 (2)0.0564 (9)
H9A0.41600.50880.31690.068*
H9B0.47430.37020.38600.068*
C180.5107 (3)0.3598 (4)0.6500 (3)0.0598 (9)
H18A0.42980.35070.63880.072*
C100.4435 (3)0.5226 (4)0.4848 (2)0.0578 (9)
H10A0.46940.61930.47970.069*
C250.7154 (3)0.0477 (4)0.0600 (3)0.0642 (10)
H25A0.72080.11430.00970.077*
C170.5992 (3)0.2823 (4)0.7333 (3)0.0667 (9)
H17A0.57870.22200.77900.080*
C220.3836 (3)0.0014 (3)0.1681 (3)0.0563 (9)
C280.7057 (3)0.1451 (4)0.2079 (3)0.0667 (10)
H28A0.70160.21120.25910.080*
C140.6579 (3)0.4611 (4)0.6040 (3)0.0742 (11)
H14A0.68010.52410.56110.089*
C270.8074 (3)0.1310 (4)0.1916 (3)0.0684 (10)
C60.0396 (3)0.2566 (5)0.2730 (3)0.0917 (14)
H6A0.03340.20130.23720.138*
H6B0.01870.35490.26600.138*
H6C0.08000.23180.35190.138*
C50.1217 (3)0.2283 (3)0.2175 (3)0.0572 (9)
C160.7161 (3)0.2940 (4)0.7486 (3)0.0690 (10)
C260.8133 (3)0.0363 (5)0.1185 (3)0.0753 (11)
H26A0.88420.02760.10740.090*
C150.7466 (3)0.3822 (5)0.6863 (3)0.0814 (12)
H15A0.82770.39080.69800.098*
C120.1685 (3)0.5944 (5)0.5398 (3)0.0878 (12)
H12A0.15670.65700.59240.132*
H12B0.15250.49920.55480.132*
H12C0.11360.61970.46370.132*
C230.2705 (3)0.0739 (4)0.2390 (3)0.0778 (11)
H23A0.27310.10180.30890.117*
H23B0.20190.01290.25480.117*
H23C0.26290.15610.19940.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0941 (8)0.1130 (9)0.1006 (8)0.0245 (7)0.0290 (6)0.0137 (7)
Cl20.0693 (7)0.1272 (11)0.1354 (10)0.0249 (7)0.0267 (6)0.0115 (8)
N40.0520 (16)0.065 (2)0.0518 (16)0.0009 (14)0.0295 (13)0.0093 (15)
O20.0865 (17)0.0762 (18)0.0682 (15)0.0036 (13)0.0531 (14)0.0109 (13)
N20.0685 (18)0.064 (2)0.0524 (16)0.0096 (16)0.0333 (15)0.0045 (15)
C30.0518 (18)0.058 (2)0.0517 (18)0.0006 (17)0.0278 (16)0.0058 (17)
C20.0498 (18)0.051 (2)0.0464 (18)0.0020 (15)0.0262 (16)0.0037 (16)
N50.0536 (16)0.0614 (19)0.0479 (15)0.0026 (14)0.0282 (13)0.0081 (14)
N10.0504 (16)0.070 (2)0.0659 (18)0.0028 (14)0.0323 (15)0.0081 (16)
C80.063 (2)0.051 (2)0.0437 (18)0.0075 (17)0.0274 (17)0.0005 (16)
N30.0655 (18)0.062 (2)0.0556 (16)0.0036 (15)0.0319 (15)0.0152 (15)
C210.0572 (19)0.050 (2)0.0508 (18)0.0131 (17)0.0315 (16)0.0076 (17)
C10.0519 (19)0.059 (2)0.0488 (19)0.0016 (17)0.0213 (16)0.0033 (17)
C40.060 (2)0.050 (2)0.0499 (19)0.0034 (17)0.0320 (16)0.0011 (17)
C190.0526 (19)0.047 (2)0.0435 (18)0.0018 (16)0.0214 (15)0.0054 (16)
C200.0570 (19)0.051 (2)0.0503 (18)0.0052 (16)0.0297 (16)0.0076 (17)
C130.067 (2)0.051 (2)0.054 (2)0.0064 (18)0.0341 (18)0.0127 (17)
C240.0502 (19)0.049 (2)0.0514 (19)0.0069 (17)0.0292 (16)0.0083 (17)
O10.109 (2)0.0778 (19)0.0720 (17)0.0029 (17)0.0441 (16)0.0235 (16)
C70.065 (2)0.077 (3)0.076 (2)0.013 (2)0.037 (2)0.018 (2)
C290.052 (2)0.063 (2)0.067 (2)0.0037 (18)0.0330 (18)0.006 (2)
C110.084 (3)0.066 (3)0.057 (2)0.021 (2)0.034 (2)0.002 (2)
C90.075 (2)0.052 (2)0.052 (2)0.0078 (18)0.0363 (18)0.0114 (17)
C180.064 (2)0.066 (3)0.061 (2)0.0023 (19)0.0382 (19)0.0068 (19)
C100.071 (2)0.055 (2)0.056 (2)0.0092 (19)0.0355 (19)0.0090 (18)
C250.066 (2)0.070 (3)0.072 (2)0.008 (2)0.043 (2)0.001 (2)
C170.085 (3)0.066 (3)0.066 (2)0.004 (2)0.047 (2)0.001 (2)
C220.067 (2)0.054 (2)0.052 (2)0.0047 (18)0.0293 (19)0.0077 (17)
C280.070 (2)0.069 (3)0.071 (2)0.002 (2)0.039 (2)0.002 (2)
C140.079 (3)0.078 (3)0.080 (3)0.020 (2)0.047 (2)0.001 (2)
C270.051 (2)0.076 (3)0.073 (2)0.003 (2)0.0206 (19)0.009 (2)
C60.075 (2)0.126 (4)0.101 (3)0.013 (3)0.063 (2)0.034 (3)
C50.053 (2)0.068 (3)0.059 (2)0.0039 (18)0.0314 (17)0.0082 (19)
C160.069 (2)0.072 (3)0.062 (2)0.003 (2)0.025 (2)0.006 (2)
C260.054 (2)0.092 (3)0.092 (3)0.007 (2)0.042 (2)0.010 (2)
C150.064 (3)0.090 (3)0.095 (3)0.007 (2)0.039 (2)0.005 (3)
C120.087 (3)0.101 (3)0.082 (3)0.027 (2)0.042 (2)0.015 (2)
C230.076 (2)0.088 (3)0.069 (2)0.005 (2)0.030 (2)0.032 (2)
Geometric parameters (Å, º) top
Cl1—C161.752 (4)C7—H7B0.9800
Cl2—C271.760 (4)C7—H7C0.9800
N4—C191.291 (3)C29—C281.389 (4)
N4—N51.401 (3)C29—H29A0.9500
O2—C221.227 (3)C11—C121.498 (5)
N2—C81.291 (3)C9—C101.543 (4)
N2—N31.415 (3)C9—H9A0.9900
C3—C41.382 (4)C9—H9B0.9900
C3—C21.390 (4)C18—C171.399 (4)
C3—H3A0.9500C18—H18A0.9500
C2—C11.406 (4)C10—H10A1.0000
C2—C191.465 (4)C25—C261.390 (5)
N5—C221.362 (4)C25—H25A0.9500
N5—C211.484 (3)C17—C161.374 (4)
N1—C11.336 (3)C17—H17A0.9500
N1—C51.355 (4)C22—C231.502 (4)
C8—C41.480 (4)C28—C271.367 (4)
C8—C91.511 (4)C28—H28A0.9500
N3—C111.365 (4)C14—C151.400 (5)
N3—C101.460 (4)C14—H14A0.9500
C21—C241.502 (4)C27—C261.359 (5)
C21—C201.530 (4)C6—C51.509 (4)
C21—H21A1.0000C6—H6A0.9800
C1—C71.508 (4)C6—H6B0.9800
C4—C51.399 (4)C6—H6C0.9800
C19—C201.508 (4)C16—C151.348 (5)
C20—H20A0.9900C26—H26A0.9500
C20—H20B0.9900C15—H15A0.9500
C13—C181.381 (4)C12—H12A0.9800
C13—C141.380 (4)C12—H12B0.9800
C13—C101.519 (4)C12—H12C0.9800
C24—C251.376 (4)C23—H23A0.9800
C24—C291.384 (4)C23—H23B0.9800
O1—C111.231 (4)C23—H23C0.9800
C7—H7A0.9800
C19—N4—N5106.8 (2)C8—C9—H9B111.1
C8—N2—N3107.0 (3)C10—C9—H9B111.1
C4—C3—C2121.8 (3)H9A—C9—H9B109.1
C4—C3—H3A119.1C13—C18—C17121.0 (3)
C2—C3—H3A119.1C13—C18—H18A119.5
C3—C2—C1117.9 (2)C17—C18—H18A119.5
C3—C2—C19116.4 (3)N3—C10—C13114.6 (3)
C1—C2—C19125.6 (3)N3—C10—C9100.4 (2)
C22—N5—N4120.4 (3)C13—C10—C9111.7 (3)
C22—N5—C21124.5 (3)N3—C10—H10A109.9
N4—N5—C21113.8 (2)C13—C10—H10A109.9
C1—N1—C5119.9 (3)C9—C10—H10A109.9
N2—C8—C4124.1 (3)C24—C25—C26121.8 (3)
N2—C8—C9113.5 (3)C24—C25—H25A119.1
C4—C8—C9122.4 (3)C26—C25—H25A119.1
C11—N3—N2122.1 (3)C16—C17—C18119.6 (3)
C11—N3—C10124.0 (3)C16—C17—H17A120.2
N2—N3—C10113.8 (2)C18—C17—H17A120.2
N5—C21—C24112.2 (2)O2—C22—N5117.7 (3)
N5—C21—C20101.0 (2)O2—C22—C23123.1 (3)
C24—C21—C20114.1 (2)N5—C22—C23119.1 (3)
N5—C21—H21A109.7C27—C28—C29118.7 (3)
C24—C21—H21A109.7C27—C28—H28A120.7
C20—C21—H21A109.7C29—C28—H28A120.7
N1—C1—C2121.2 (3)C13—C14—C15121.6 (3)
N1—C1—C7114.6 (3)C13—C14—H14A119.2
C2—C1—C7124.2 (3)C15—C14—H14A119.2
C3—C4—C5116.5 (3)C26—C27—C28120.7 (3)
C3—C4—C8116.6 (3)C26—C27—Cl2120.5 (3)
C5—C4—C8126.9 (3)C28—C27—Cl2118.8 (3)
N4—C19—C2123.7 (3)C5—C6—H6A109.5
N4—C19—C20114.7 (2)C5—C6—H6B109.5
C2—C19—C20121.6 (3)H6A—C6—H6B109.5
C19—C20—C21103.0 (2)C5—C6—H6C109.5
C19—C20—H20A111.2H6A—C6—H6C109.5
C21—C20—H20A111.2H6B—C6—H6C109.5
C19—C20—H20B111.2N1—C5—C4122.7 (3)
C21—C20—H20B111.2N1—C5—C6114.0 (3)
H20A—C20—H20B109.1C4—C5—C6123.3 (3)
C18—C13—C14117.5 (3)C15—C16—C17120.6 (3)
C18—C13—C10121.9 (3)C15—C16—Cl1119.8 (3)
C14—C13—C10120.3 (3)C17—C16—Cl1119.5 (3)
C25—C24—C29116.6 (3)C27—C26—C25119.8 (3)
C25—C24—C21122.3 (3)C27—C26—H26A120.1
C29—C24—C21121.1 (3)C25—C26—H26A120.1
C1—C7—H7A109.5C16—C15—C14119.6 (3)
C1—C7—H7B109.5C16—C15—H15A120.2
H7A—C7—H7B109.5C14—C15—H15A120.2
C1—C7—H7C109.5C11—C12—H12A109.5
H7A—C7—H7C109.5C11—C12—H12B109.5
H7B—C7—H7C109.5H12A—C12—H12B109.5
C28—C29—C24122.5 (3)C11—C12—H12C109.5
C28—C29—H29A118.7H12A—C12—H12C109.5
C24—C29—H29A118.7H12B—C12—H12C109.5
O1—C11—N3118.8 (3)C22—C23—H23A109.5
O1—C11—C12124.8 (3)C22—C23—H23B109.5
N3—C11—C12116.4 (3)H23A—C23—H23B109.5
C8—C9—C10103.2 (2)C22—C23—H23C109.5
C8—C9—H9A111.1H23A—C23—H23C109.5
C10—C9—H9A111.1H23B—C23—H23C109.5
C4—C3—C2—C10.5 (5)N2—N3—C11—C120.4 (5)
C4—C3—C2—C19179.3 (3)C10—N3—C11—C12179.1 (3)
C19—N4—N5—C22162.3 (3)N2—C8—C9—C108.9 (3)
C19—N4—N5—C215.3 (3)C4—C8—C9—C10171.8 (3)
N3—N2—C8—C4179.9 (3)C14—C13—C18—C171.0 (5)
N3—N2—C8—C90.6 (3)C10—C13—C18—C17173.1 (3)
C8—N2—N3—C11170.7 (3)C11—N3—C10—C1374.2 (4)
C8—N2—N3—C108.9 (3)N2—N3—C10—C13106.2 (3)
C22—N5—C21—C2479.9 (4)C11—N3—C10—C9165.9 (3)
N4—N5—C21—C24113.0 (3)N2—N3—C10—C913.7 (3)
C22—N5—C21—C20158.2 (3)C18—C13—C10—N317.2 (4)
N4—N5—C21—C208.9 (3)C14—C13—C10—N3168.8 (3)
C5—N1—C1—C20.6 (5)C18—C13—C10—C996.1 (3)
C5—N1—C1—C7179.9 (3)C14—C13—C10—C977.8 (4)
C3—C2—C1—N11.0 (4)C8—C9—C10—N312.5 (3)
C19—C2—C1—N1178.8 (3)C8—C9—C10—C13109.4 (3)
C3—C2—C1—C7179.9 (3)C29—C24—C25—C260.7 (5)
C19—C2—C1—C70.4 (5)C21—C24—C25—C26179.7 (3)
C2—C3—C4—C50.2 (5)C13—C18—C17—C160.9 (5)
C2—C3—C4—C8179.4 (3)N4—N5—C22—O2170.1 (3)
N2—C8—C4—C3179.2 (3)C21—N5—C22—O23.8 (5)
C9—C8—C4—C30.0 (4)N4—N5—C22—C2311.4 (4)
N2—C8—C4—C51.2 (5)C21—N5—C22—C23177.6 (3)
C9—C8—C4—C5179.6 (3)C24—C29—C28—C270.1 (5)
N5—N4—C19—C2179.1 (3)C18—C13—C14—C151.9 (5)
N5—N4—C19—C201.1 (3)C10—C13—C14—C15172.3 (3)
C3—C2—C19—N4178.9 (3)C29—C28—C27—C260.1 (5)
C1—C2—C19—N40.9 (5)C29—C28—C27—Cl2179.5 (3)
C3—C2—C19—C201.1 (4)C1—N1—C5—C40.2 (5)
C1—C2—C19—C20178.7 (3)C1—N1—C5—C6179.0 (3)
N4—C19—C20—C216.5 (3)C3—C4—C5—N10.6 (5)
C2—C19—C20—C21175.5 (3)C8—C4—C5—N1179.0 (3)
N5—C21—C20—C198.4 (3)C3—C4—C5—C6179.3 (3)
C24—C21—C20—C19112.2 (3)C8—C4—C5—C60.3 (5)
N5—C21—C24—C25116.5 (3)C18—C17—C16—C151.9 (5)
C20—C21—C24—C25129.5 (3)C18—C17—C16—Cl1176.6 (3)
N5—C21—C24—C2964.7 (4)C28—C27—C26—C250.3 (6)
C20—C21—C24—C2949.4 (4)Cl2—C27—C26—C25179.1 (3)
C25—C24—C29—C280.3 (5)C24—C25—C26—C270.8 (5)
C21—C24—C29—C28179.3 (3)C17—C16—C15—C141.0 (6)
N2—N3—C11—O1179.2 (3)Cl1—C16—C15—C14177.5 (3)
C10—N3—C11—O11.3 (5)C13—C14—C15—C161.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.992.593.358 (3)135
C17—H17A···O2ii0.952.503.359 (4)151
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC29H27Cl2N5O2
Mr548.46
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)12.345 (3), 9.6763 (19), 13.268 (3)
β (°) 115.00 (3)
V3)1436.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
7509, 3736, 2520
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.077, 0.91
No. of reflections3736
No. of parameters344
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15
Absolute structureFlack (1983), 1031 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.992.593.358 (3)135
C17—H17A···O2ii0.952.503.359 (4)151
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y, z+1.
 

Acknowledgements

The authors thank the Instrument Analysis and Research Center of Shanghai University for the data collection. The project was supported by the Key Subject of Shanghai Municipal Education Commission (grant No. J50102) and the Foundation of the Education Commission of Shanghai Municipality, China (grant No. 08zz44).

References

First citationAhn, J. H., Kim, H. M., Jung, S. H., Kang, S. K., Kim, K. R., Rhee, S. D., Yang, S. D., Cheon, H. G. & Kim, S. S. (2004). Bioorg. Med. Chem. Lett. 14, 4461–4465.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPalaska, E., Erol, D. & Demirdamar, R. (1996). Eur. J. Med. Chem. 31, 43–47.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYar, M. S., Siddiqui, A. A. & Ali, M. A. (2006). Bioorg. Med. Chem. Lett. 16, 4571–4574.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds