organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Piperidinium 3-hydr­­oxy-2-naphthoate

aDepartment of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250353, People's Republic of China
*Correspondence e-mail: ceswyt@sohu.com

(Received 30 July 2008; accepted 8 August 2008; online 13 August 2008)

The crystals of the title salt, C5H12N+·C11H7O3, were obtained from a methanol/water solution of 3-hydr­oxy-2-naphthoic acid and piperidine at room temperature. In the crystal structure, the piperidinium cations display a chair conformation and link with hydroxy­naphthoate anions via N—H⋯O and C—H⋯O hydrogen bonds. An intra­molecular O—H⋯O inter­action is also present.

Related literature

For background, see: Shen et al. (2008[Shen, H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, o1146-o1147.]); Wang et al. (2005a[Wang, Y.-T., Tang, G.-M. & Qin, D.-W. (2005a). Acta Cryst. E61, o3623-o3624.],b[Wang, Y.-T., Tang, G.-M. & Qin, D.-W. (2005b). Acta Cryst. E61, o3979-o3980.], 2006[Wang, Y.-T., Tang, G.-M. & Qin, X.-Y. (2006). Acta Cryst. E62, o1496-o1497.]).

[Scheme 1]

Experimental

Crystal data
  • C5H12N+·C11H7O3

  • Mr = 273.32

  • Monoclinic, P 21 /n

  • a = 8.6683 (3) Å

  • b = 19.4537 (5) Å

  • c = 9.5932 (3) Å

  • β = 111.959 (2)°

  • V = 1500.34 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10640 measured reflections

  • 3385 independent reflections

  • 1512 reflections with I > σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.160

  • S = 0.99

  • 3385 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O3 0.82 1.77 2.504 (2) 149
N1—H1C⋯O2i 0.96 1.83 2.783 (2) 173
N1—H1D⋯O3 0.96 1.75 2.709 (2) 173
C12—H12A⋯O1ii 0.97 2.40 3.336 (3) 161
Symmetry codes: (i) -x, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In some biological system, intermolecular interactions play the important role (Shen et al., 2008), these interactions have attracted our much attention in past years. A series of compounds with weak intermolecular interactions have been synthesized and their crystal structures have been characterized (Wang et al., 2005a,b, 2006). As part of our investigation, we recently prepared the title compound and present here its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit contains one 3-hydroxy-2-naphthoate anion and one piperidinium cation. The piperidinium cation displays a typical chair conformation. The carboxylate group is coplanar with the naphthalene ring. Intermolecular N—H···O and C—H···O hydrogen bonding presents in the crystal structure (Table 1).

Related literature top

For background, see: Shen et al. (2008); Wang et al. (2005a,b, 2006).

Experimental top

3-Hydroxy-2-naphthoic acid (94 mg, 0.5 mmol) and piperidine (43 mg, 0.5 mmol) were dissolved in methanol (5 ml) and water (1 ml) at room temperature. The single crystals of the title compound were obtained from the solution after several days.

Refinement top

H atoms were placed in calculated positions with O—H = 0.82, N—H = 0.96, C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.5Ueq(O,N) and 1.2Uiso(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Piperidinium 3-hydroxy-2-naphthoate top
Crystal data top
C5H12N+·C11H7O3F(000) = 584
Mr = 273.32Dx = 1.210 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1627 reflections
a = 8.6683 (3) Åθ = 2.5–20.5°
b = 19.4537 (5) ŵ = 0.08 mm1
c = 9.5932 (3) ÅT = 298 K
β = 111.959 (2)°Block, colourless
V = 1500.34 (8) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1512 reflections with I > σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.4°, θmin = 2.1°
ϕ and ω scansh = 911
10640 measured reflectionsk = 2522
3385 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0733P)2]
where P = (Fo2 + 2Fc2)/3
3385 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C5H12N+·C11H7O3V = 1500.34 (8) Å3
Mr = 273.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6683 (3) ŵ = 0.08 mm1
b = 19.4537 (5) ÅT = 298 K
c = 9.5932 (3) Å0.40 × 0.30 × 0.20 mm
β = 111.959 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1512 reflections with I > σ(I)
10640 measured reflectionsRint = 0.035
3385 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 0.99Δρmax = 0.13 e Å3
3385 reflectionsΔρmin = 0.13 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1726 (2)0.09197 (8)0.39856 (18)0.0718 (5)
H1C0.19790.04910.43460.108*
H1D0.06260.10540.46350.108*
O10.31760 (19)0.22455 (7)0.73435 (18)0.0944 (5)
H1B0.23310.20510.67860.142*
O20.24997 (18)0.03674 (7)0.51894 (15)0.0832 (5)
O30.14101 (19)0.13370 (8)0.56381 (18)0.0948 (5)
C10.6069 (3)0.20988 (10)0.8318 (2)0.0692 (6)
H1A0.61760.25300.87630.083*
C20.4523 (3)0.18561 (9)0.7481 (2)0.0636 (5)
C30.4321 (2)0.12071 (9)0.67629 (19)0.0561 (5)
C40.5718 (3)0.08253 (9)0.69633 (19)0.0604 (5)
H4A0.55970.03980.64980.072*
C50.7325 (3)0.10544 (10)0.7844 (2)0.0629 (5)
C60.8758 (3)0.06627 (12)0.8062 (3)0.0930 (7)
H6A0.86540.02290.76260.112*
C71.0287 (3)0.09073 (16)0.8897 (3)0.1178 (10)
H7A1.12230.06420.90270.141*
C81.0468 (3)0.15586 (15)0.9569 (3)0.1102 (9)
H8A1.15240.17241.01370.132*
C90.9119 (3)0.19463 (12)0.9394 (2)0.0838 (6)
H9A0.92560.23750.98520.101*
C100.7497 (3)0.17107 (10)0.8523 (2)0.0623 (5)
C110.2638 (3)0.09412 (11)0.5796 (2)0.0669 (6)
C120.2927 (3)0.14545 (10)0.4042 (2)0.0772 (6)
H12A0.26190.18950.37490.093*
H12B0.28930.14950.50610.093*
C130.4652 (3)0.12680 (12)0.3005 (3)0.0900 (7)
H13A0.54120.16340.30040.108*
H13B0.50010.08530.33660.108*
C140.4732 (3)0.11527 (13)0.1424 (3)0.0995 (8)
H14A0.58370.09960.07980.119*
H14B0.45250.15830.10150.119*
C150.3471 (3)0.06288 (13)0.1397 (2)0.0857 (7)
H15A0.37590.01840.16900.103*
H15B0.34900.05890.03830.103*
C160.1763 (3)0.08263 (11)0.2440 (3)0.0852 (7)
H16A0.09790.04710.24390.102*
H16B0.14340.12510.20970.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0655 (12)0.0642 (11)0.0731 (11)0.0064 (8)0.0116 (9)0.0044 (8)
O10.0755 (11)0.0761 (10)0.1167 (13)0.0101 (8)0.0186 (9)0.0260 (8)
O20.0942 (12)0.0604 (9)0.0768 (10)0.0154 (7)0.0110 (8)0.0074 (7)
O30.0677 (11)0.0869 (11)0.1111 (13)0.0032 (9)0.0121 (9)0.0172 (9)
C10.0774 (16)0.0539 (11)0.0683 (13)0.0059 (11)0.0182 (12)0.0120 (9)
C20.0689 (15)0.0538 (12)0.0641 (12)0.0031 (11)0.0203 (11)0.0032 (9)
C30.0682 (14)0.0483 (10)0.0481 (10)0.0035 (9)0.0176 (9)0.0014 (8)
C40.0753 (15)0.0505 (11)0.0529 (11)0.0009 (10)0.0211 (10)0.0031 (8)
C50.0656 (14)0.0660 (13)0.0545 (11)0.0015 (11)0.0192 (10)0.0012 (9)
C60.0789 (19)0.0897 (16)0.0979 (17)0.0125 (14)0.0187 (14)0.0205 (13)
C70.071 (2)0.130 (2)0.131 (2)0.0165 (16)0.0138 (17)0.0327 (19)
C80.0669 (19)0.126 (2)0.119 (2)0.0029 (16)0.0122 (15)0.0265 (18)
C90.0794 (17)0.0836 (15)0.0786 (15)0.0114 (13)0.0181 (13)0.0138 (12)
C100.0655 (14)0.0637 (13)0.0536 (11)0.0056 (10)0.0174 (10)0.0023 (9)
C110.0755 (16)0.0566 (13)0.0604 (12)0.0084 (12)0.0160 (11)0.0031 (10)
C120.1010 (19)0.0594 (13)0.0748 (14)0.0006 (12)0.0371 (14)0.0028 (10)
C130.0788 (18)0.0879 (16)0.1040 (19)0.0125 (13)0.0351 (15)0.0085 (14)
C140.0805 (18)0.116 (2)0.0847 (17)0.0087 (15)0.0112 (13)0.0173 (15)
C150.0853 (19)0.1038 (18)0.0645 (13)0.0124 (14)0.0239 (13)0.0070 (12)
C160.0800 (18)0.0910 (16)0.0915 (16)0.0034 (13)0.0401 (14)0.0088 (13)
Geometric parameters (Å, º) top
N1—C121.487 (2)C7—C81.403 (3)
N1—C161.482 (3)C7—H7A0.9300
N1—H1C0.9601C8—C91.348 (3)
N1—H1D0.9600C8—H8A0.9300
O1—C21.357 (2)C9—C101.417 (3)
O1—H1B0.8200C9—H9A0.9300
O2—C111.244 (2)C12—C131.498 (3)
O3—C111.276 (2)C12—H12A0.9700
C1—C21.363 (3)C12—H12B0.9700
C1—C101.400 (3)C13—C141.509 (3)
C1—H1A0.9300C13—H13A0.9700
C2—C31.417 (2)C13—H13B0.9700
C3—C41.372 (3)C14—C151.502 (3)
C3—C111.498 (3)C14—H14A0.9700
C4—C51.404 (3)C14—H14B0.9700
C4—H4A0.9300C15—C161.494 (3)
C5—C61.404 (3)C15—H15A0.9700
C5—C101.416 (2)C15—H15B0.9700
C6—C71.353 (3)C16—H16A0.9700
C6—H6A0.9300C16—H16B0.9700
C12—N1—C16111.63 (16)C1—C10—C9122.6 (2)
C12—N1—H1C109.7C5—C10—C9118.3 (2)
C16—N1—H1C109.4O2—C11—O3123.8 (2)
C12—N1—H1D108.9O2—C11—C3120.0 (2)
C16—N1—H1D109.2O3—C11—C3116.16 (19)
H1C—N1—H1D108.0N1—C12—C13110.18 (17)
C2—O1—H1B109.5N1—C12—H12A109.6
C2—C1—C10121.22 (18)C13—C12—H12A109.6
C2—C1—H1A119.4N1—C12—H12B109.6
C10—C1—H1A119.4C13—C12—H12B109.6
O1—C2—C1118.97 (18)H12A—C12—H12B108.1
O1—C2—C3120.30 (19)C12—C13—C14111.27 (19)
C1—C2—C3120.74 (19)C12—C13—H13A109.4
C4—C3—C2118.14 (18)C14—C13—H13A109.4
C4—C3—C11120.27 (18)C12—C13—H13B109.4
C2—C3—C11121.58 (19)C14—C13—H13B109.4
C3—C4—C5122.53 (18)H13A—C13—H13B108.0
C3—C4—H4A118.7C15—C14—C13110.99 (19)
C5—C4—H4A118.7C15—C14—H14A109.4
C6—C5—C4122.70 (19)C13—C14—H14A109.4
C6—C5—C10119.1 (2)C15—C14—H14B109.4
C4—C5—C10118.21 (18)C13—C14—H14B109.4
C7—C6—C5120.9 (2)H14A—C14—H14B108.0
C7—C6—H6A119.6C16—C15—C14111.0 (2)
C5—C6—H6A119.6C16—C15—H15A109.4
C6—C7—C8120.4 (2)C14—C15—H15A109.4
C6—C7—H7A119.8C16—C15—H15B109.4
C8—C7—H7A119.8C14—C15—H15B109.4
C9—C8—C7120.3 (2)H15A—C15—H15B108.0
C9—C8—H8A119.8N1—C16—C15110.30 (17)
C7—C8—H8A119.8N1—C16—H16A109.6
C8—C9—C10121.0 (2)C15—C16—H16A109.6
C8—C9—H9A119.5N1—C16—H16B109.6
C10—C9—H9A119.5C15—C16—H16B109.6
C1—C10—C5119.13 (19)H16A—C16—H16B108.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O30.821.772.504 (2)149
N1—H1C···O2i0.961.832.783 (2)173
N1—H1D···O30.961.752.709 (2)173
C12—H12A···O1ii0.972.403.336 (3)161
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H12N+·C11H7O3
Mr273.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.6683 (3), 19.4537 (5), 9.5932 (3)
β (°) 111.959 (2)
V3)1500.34 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > σ(I)] reflections
10640, 3385, 1512
Rint0.035
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.160, 0.99
No. of reflections3385
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O30.821.772.504 (2)149
N1—H1C···O2i0.961.832.783 (2)173
N1—H1D···O30.961.752.709 (2)173
C12—H12A···O1ii0.972.403.336 (3)161
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

Y-TW thanks the Starting Fund of Shandong Institute of Light Industry for financial support.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, o1146–o1147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Qin, D.-W. (2005a). Acta Cryst. E61, o3623–o3624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Qin, D.-W. (2005b). Acta Cryst. E61, o3979–o3980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Qin, X.-Y. (2006). Acta Cryst. E62, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds