metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1208-m1209

2,6-Di­amino­pyridinium bis­­(4-hy­droxy­pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)chromate(III) dihydrate

aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue 15614, Tehran, Iran, bDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and cFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 6 August 2008; accepted 25 August 2008; online 30 August 2008)

The reaction of chromium(III) nitrate hexa­hydrate, pyridine-2,6-diamine and 4-hydroxy­pyridine-2,6-dicarboxylic acid in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (C5H8N3)[Cr(C7H3NO5)2]·2H2O or (pydaH)[Cr(hypydc)2]·2H2O (where pyda is pyridine-2,6-diamine and hypydcH2 is 4-hydroxy­pyridine-2,6-dicarboxylic acid). Each CrIII atom is hexa­coordinated by four O and two N atoms from two (hypydc)2− fragments, which act as tridentate ligands, in a distorted octa­hedral geometry. The O—Cr—O—C torsion angles between the two planes of the (hypydc)2− fragments [−99.81 (17) and 97.77 (17)°] indicate that these two units are almost perpendicular to one another. In the crystal structure, extensive O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds with DA distances ranging from 2.560 (2) to 3.279 (3) Å, ion pairing, C—O⋯π [O⋯π = 3.166 (2) Å] and ππ stacking inter­actions between (hypydc)2− and (pydaH)+ rings [with a centroid–centroid distance of 3.3353 (14) Å] contribute to the formation of a three-dimensional supra­molecular structure.

Related literature

For related literature, see: Aghabozorg et al., (2007[Aghabozorg, H., Ghadermazi, M., Soleimannejad, J. & Sheshmani, S. (2007). Acta Cryst. E63, m1917-m1918.]); Aghabozorg, Manteghi et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Aghabozorg, Saadaty et al. (2008[Aghabozorg, H., Saadaty, S., Motyeian, E., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m466-m467.]); Ranjbar et al. (2001[Ranjbar, M., Aghabozorg, H., Moghimi, A. & Yanovsky, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 626-628.]); Soleimannejad et al. (2008[Soleimannejad, J., Aghabozorg, H. & Hooshmand, S. (2008). Acta Cryst. E64, m564-m565.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H8N3)[Cr(C7H3NO5)2]·2H2O

  • Mr = 560.38

  • Monoclinic, P 21 /n

  • a = 6.9590 (4) Å

  • b = 20.9904 (12) Å

  • c = 14.8951 (8) Å

  • β = 95.3030 (13)°

  • V = 2166.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 100 (2) K

  • 0.32 × 0.08 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector' diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 0.959

  • 24511 measured reflections

  • 5229 independent reflections

  • 3694 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.104

  • S = 1.02

  • 5229 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3NA⋯O2i 0.87 2.03 2.840 (3) 154
N4—H4NB⋯O11i 0.87 2.09 2.958 (3) 173
N4—H4NA⋯O3ii 0.87 2.33 3.122 (3) 151
N5—H5NB⋯O8 0.87 1.99 2.831 (3) 162
N5—H5NA⋯O2i 0.87 2.01 2.812 (3) 152
O5—H5O⋯O12 0.80 1.77 2.560 (2) 169
O10—H10O⋯O11iii 0.80 1.83 2.624 (3) 173
O11—H11C⋯O1 0.82 1.92 2.719 (2) 163
O11—H11D⋯O7iv 0.82 1.90 2.709 (3) 169
O12—H12A⋯O9v 0.82 2.01 2.809 (3) 165
O12—H12B⋯O4ii 0.82 2.05 2.872 (3) 177
C16—H16A⋯O3ii 0.95 2.49 3.265 (3) 139
C18—H18A⋯O12vi 0.95 2.59 3.279 (3) 130
Symmetry codes: (i) -x, -y+2, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1; (iv) x-1, y, z; (v) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. Hydrogen bond geometries are given in Table 1. According to the crystal structure, the title compound is composed of an anionic complex, [Cr(hypydc)2]-, protonated diamino-2,6-pyridinium as a counter ion, (pydaH)+, and two uncoordinated water molecules. This compound crystallizes in the monoclinic system, space group P21/n with four molecules in the unit cell.

The CrIII atom is six-coordinated by two 4-hydroxypyridine-2,6-dicarboxylate, (hypydc)2-, groups which act as tridentate ligand through one pyridine N atom and two carboxylate O atoms. N1 and N2 atoms of two (hypydc)2- fragments occupy the axial position, while O1, O3, O6 and O8 atoms form the equatorial plane. The N1—Cr1—N2 angle [177.33 (9)°] deviates slightly from linearity. Therefore, the coordination geometry around CrIII can be described as distorted octahedral. The bond angles O6—Cr1—O1, O3—Cr1—O6, O3—Cr1—O8 and O1—Cr1—O8 (93.28 (7)°, 93.82 (7)°, 90.88 (7)° and 91.46 (7)°, respectively), and the O1—Cr1—O6—C13 and O8—Cr1—O1—C6 torsion angles (-99.81 (17)° and (97.77 (17)°, respectively) show that these two (hypydc)2- groups are almost perpendicular. Furthermore, the bond angles O1—Cr1—O3 [156.06 (7)°] and O6—Cr1—O8 [156.99 (7)°] indicate that four carboxylate groups of the two dianions are in a flattened tetrahedral arrangement around the CrIII atom.

In the crystal structure of (pydaH)[Cr(hypydc)2].2H2O, the spaces between to layers of [Cr(hypydc)2]- anions are filled with (pydaH)+ cations and water molecules. There are also π-π stacking interactions between the aromatic ring of the coordinated (hypydc)2– anion and the aromatic ring of the (pydaH)+ cation with distances of 3.3353 (14) Å for Cg1···Cg2. There are also C—O···π stacking interactions between C6–O2 and Cg1 with O···π distance of 3.166 (2) Å (1 - x, 2 - y, -z) [Cg1 and Cg2 are the centroid for (N1/C1—C5) and (N3/C15—C19) rings, respectively] (Fig. 2).

Intermolecular O—H···O, N—H···O and C—H···O hydrogen bonding with D···A ranging from 2.560 (2) to 3.279 (3) Å, ionpairing, ππ and C—O···π stacking interactions seem to be effective in the stabilization of the crystal structure, resulting in the formation of an interesting supramolecular structure (Fig. 3).

Related literature top

For related literature, see: Aghabozorg, Ghadermazi et al., (2007); Aghabozorg, Manteghi et al. (2008); Aghabozorg, Saadaty et al. (2008); Ranjbar et al. (2001); Soleimannejad et al. (2008).

Experimental top

An aqueous solution of CrCl3 (24 mg, 0.15 mmol), pyridine-2,6-diamine (32 mg, 0.3 mmol) and 4-Hydroxypyridine-2,6-dicarboxylic acid (54 mg, 0.3 mmol) was added to each other in a 1:2:2 molar ratio, and the reaction mixture was heated at about 50°C for 4 h. Violet crystals of the title compound were obtained from the solution after two weeks at room temperature.

Refinement top

The hydrogen atoms of NH2 and OH groups and also H atoms of water molecule were found in difference Fourier synthesis. The hydrogen atoms of the H(C) atom positions were calculated. All Hydrogen atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(Xi), where U(Xi) the equivalent thermal parameters of the carbon or nitrogen or oxygen atom to which corresponding H atom is bonded.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (pydaH)[Cr(hypydc)2].2H2O, hydrogen bonds are shown as dashed lines and thermal ellipsoids are at 50% probability level.
[Figure 2] Fig. 2. The ππand C—O···π stacking interactions with the distances.
[Figure 3] Fig. 3. Crystal packing of the title compound showing the three dimensional H-bonded framework.
2,6-Diaminopyridinium bis(4-hydroxypyridine-2,6-dicarboxylato- κ3O2,N,O6)chromate(III) dihydrate top
Crystal data top
(C5H8N3)[Cr(C7H3NO5)2]·2H2OF(000) = 1148
Mr = 560.38Dx = 1.718 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1320 reflections
a = 6.9590 (4) Åθ = 3–28°
b = 20.9904 (12) ŵ = 0.61 mm1
c = 14.8951 (8) ÅT = 100 K
β = 95.3030 (13)°Needle, black
V = 2166.4 (2) Å30.32 × 0.08 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector'
diffractometer
5229 independent reflections
Radiation source: fine-focus sealed tube3694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.829, Tmax = 0.959k = 2727
24511 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.104H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.9675P]
where P = (Fo2 + 2Fc2)/3
5229 reflections(Δ/σ)max = 0.002
336 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
(C5H8N3)[Cr(C7H3NO5)2]·2H2OV = 2166.4 (2) Å3
Mr = 560.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9590 (4) ŵ = 0.61 mm1
b = 20.9904 (12) ÅT = 100 K
c = 14.8951 (8) Å0.32 × 0.08 × 0.07 mm
β = 95.3030 (13)°
Data collection top
Bruker APEXII CCD area-detector'
diffractometer
5229 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3694 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.959Rint = 0.078
24511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.02Δρmax = 0.47 e Å3
5229 reflectionsΔρmin = 0.57 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.46263 (6)1.098248 (19)0.20578 (3)0.00992 (10)
O10.3226 (2)1.01686 (8)0.17083 (11)0.0124 (4)
O20.1871 (3)0.95887 (8)0.05618 (11)0.0141 (4)
O30.5836 (2)1.18207 (8)0.18501 (11)0.0127 (4)
O40.6584 (3)1.25241 (8)0.08081 (12)0.0154 (4)
O50.3766 (3)1.11140 (8)0.20081 (11)0.0166 (4)
H5O0.40371.14230.22840.020*
O60.7149 (2)1.05418 (8)0.23449 (11)0.0138 (4)
O70.9177 (3)1.01550 (9)0.34882 (12)0.0192 (4)
O80.2157 (2)1.14101 (8)0.23077 (11)0.0135 (4)
O90.0389 (3)1.17639 (9)0.33928 (12)0.0174 (4)
O100.5003 (3)1.09070 (9)0.61131 (11)0.0190 (4)
H10O0.60291.08460.63880.023*
O110.1788 (3)0.93417 (8)0.28815 (12)0.0159 (4)
H11D0.09010.95440.30710.019*
H11C0.23000.95250.24800.046 (11)*
O120.4442 (3)1.21870 (8)0.27326 (12)0.0170 (4)
H12A0.44971.25080.24180.020*
H12B0.36561.22730.31600.020*
N10.4410 (3)1.10250 (10)0.07265 (13)0.0106 (4)
N20.4719 (3)1.09238 (9)0.33828 (13)0.0105 (4)
N30.0320 (3)1.16527 (10)0.07279 (13)0.0117 (4)
H3NA0.09061.12940.08590.014*
N40.0433 (3)1.19284 (11)0.22368 (14)0.0178 (5)
H4NB0.09241.15630.24130.021*
H4NA0.00251.21750.26480.032 (9)*
N50.0454 (3)1.13054 (10)0.07407 (14)0.0135 (4)
H5NB0.01191.13500.12810.016*
H5NA0.09861.09610.05060.016*
C10.3476 (3)1.05598 (11)0.02427 (16)0.0101 (5)
C20.3233 (4)1.05809 (12)0.06822 (16)0.0117 (5)
H2A0.25731.02500.10190.014*
C30.3993 (3)1.11092 (11)0.11176 (16)0.0108 (5)
C40.4932 (3)1.15980 (12)0.05965 (16)0.0110 (5)
H4A0.54431.19590.08760.013*
C50.5088 (3)1.15376 (11)0.03232 (16)0.0108 (5)
C60.2781 (3)1.00555 (11)0.08605 (16)0.0105 (5)
C70.5931 (3)1.20100 (12)0.10225 (16)0.0111 (5)
C80.6272 (4)1.06604 (12)0.38294 (16)0.0123 (5)
C90.6455 (4)1.06333 (12)0.47589 (16)0.0122 (5)
H9A0.75551.04440.50780.015*
C100.4959 (4)1.08960 (11)0.52222 (16)0.0137 (5)
C110.3335 (4)1.11654 (12)0.47336 (17)0.0137 (5)
H11A0.23051.13390.50320.016*
C120.3287 (4)1.11698 (11)0.38087 (16)0.0117 (5)
C130.7689 (4)1.04231 (12)0.31917 (16)0.0128 (5)
C140.1782 (4)1.14746 (11)0.31450 (16)0.0118 (5)
C150.0192 (4)1.20629 (12)0.13776 (17)0.0132 (5)
C160.1308 (4)1.25899 (12)0.11129 (17)0.0149 (5)
H16A0.17131.28790.15490.018*
C170.1819 (4)1.26871 (12)0.02048 (17)0.0138 (5)
H17A0.26001.30440.00230.017*
C180.1230 (4)1.22815 (12)0.04490 (17)0.0135 (5)
H18A0.15511.23680.10710.016*
C190.0162 (4)1.17463 (12)0.01759 (16)0.0122 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0125 (2)0.0104 (2)0.00680 (19)0.00029 (16)0.00056 (14)0.00067 (15)
O10.0170 (9)0.0115 (9)0.0083 (9)0.0017 (7)0.0000 (7)0.0004 (6)
O20.0167 (9)0.0123 (9)0.0131 (9)0.0027 (7)0.0006 (7)0.0010 (7)
O30.0161 (9)0.0135 (9)0.0084 (9)0.0023 (7)0.0003 (7)0.0013 (7)
O40.0189 (10)0.0120 (9)0.0149 (10)0.0027 (8)0.0011 (7)0.0010 (7)
O50.0284 (11)0.0143 (10)0.0068 (9)0.0023 (8)0.0011 (7)0.0021 (7)
O60.0143 (9)0.0156 (9)0.0114 (9)0.0019 (7)0.0014 (7)0.0015 (7)
O70.0170 (10)0.0241 (11)0.0161 (10)0.0082 (8)0.0007 (7)0.0006 (8)
O80.0135 (9)0.0175 (9)0.0092 (9)0.0023 (7)0.0002 (7)0.0007 (7)
O90.0177 (10)0.0214 (10)0.0134 (10)0.0071 (8)0.0029 (7)0.0001 (7)
O100.0214 (10)0.0279 (11)0.0073 (9)0.0029 (8)0.0010 (7)0.0002 (7)
O110.0169 (10)0.0181 (10)0.0136 (9)0.0020 (8)0.0052 (7)0.0022 (7)
O120.0230 (10)0.0145 (9)0.0128 (9)0.0013 (8)0.0018 (7)0.0020 (7)
N10.0102 (10)0.0101 (10)0.0117 (10)0.0019 (8)0.0014 (8)0.0019 (8)
N20.0125 (10)0.0100 (10)0.0088 (10)0.0002 (8)0.0003 (8)0.0009 (8)
N30.0133 (11)0.0102 (10)0.0118 (11)0.0008 (8)0.0018 (8)0.0010 (8)
N40.0215 (12)0.0190 (12)0.0125 (11)0.0055 (10)0.0010 (9)0.0041 (9)
N50.0147 (11)0.0158 (11)0.0097 (10)0.0018 (9)0.0007 (8)0.0002 (8)
C10.0092 (12)0.0094 (12)0.0118 (12)0.0024 (9)0.0024 (9)0.0006 (9)
C20.0116 (12)0.0098 (12)0.0132 (13)0.0025 (9)0.0008 (9)0.0012 (9)
C30.0117 (12)0.0140 (13)0.0066 (11)0.0042 (10)0.0001 (9)0.0002 (9)
C40.0102 (12)0.0115 (12)0.0114 (12)0.0030 (9)0.0018 (9)0.0018 (9)
C50.0081 (12)0.0110 (12)0.0134 (13)0.0015 (9)0.0017 (9)0.0007 (9)
C60.0103 (12)0.0116 (12)0.0099 (12)0.0025 (10)0.0030 (9)0.0002 (9)
C70.0088 (12)0.0133 (12)0.0113 (12)0.0031 (10)0.0011 (9)0.0018 (9)
C80.0129 (13)0.0105 (12)0.0134 (13)0.0018 (10)0.0002 (10)0.0004 (9)
C90.0140 (13)0.0112 (12)0.0110 (12)0.0022 (10)0.0014 (9)0.0005 (9)
C100.0201 (13)0.0110 (12)0.0098 (12)0.0014 (10)0.0008 (10)0.0015 (9)
C110.0160 (13)0.0123 (12)0.0132 (13)0.0016 (10)0.0037 (10)0.0013 (9)
C120.0122 (12)0.0100 (12)0.0124 (12)0.0020 (9)0.0011 (9)0.0021 (9)
C130.0154 (13)0.0117 (12)0.0113 (12)0.0009 (10)0.0011 (10)0.0017 (9)
C140.0145 (13)0.0109 (12)0.0098 (12)0.0008 (10)0.0005 (9)0.0003 (9)
C150.0130 (13)0.0143 (13)0.0123 (13)0.0050 (10)0.0016 (10)0.0030 (9)
C160.0150 (13)0.0125 (13)0.0173 (14)0.0019 (10)0.0030 (10)0.0039 (10)
C170.0111 (12)0.0088 (12)0.0214 (14)0.0015 (10)0.0010 (10)0.0017 (10)
C180.0120 (13)0.0130 (13)0.0154 (13)0.0014 (10)0.0000 (10)0.0025 (10)
C190.0090 (12)0.0152 (13)0.0123 (13)0.0034 (10)0.0001 (9)0.0002 (9)
Geometric parameters (Å, º) top
Cr1—N21.973 (2)N4—C151.343 (3)
Cr1—N11.977 (2)N4—H4NB0.8700
Cr1—O31.9872 (17)N4—H4NA0.8700
Cr1—O61.9957 (18)N5—C191.347 (3)
Cr1—O82.0036 (17)N5—H5NB0.8700
Cr1—O12.0111 (17)N5—H5NA0.8701
O1—C61.294 (3)C1—C21.373 (3)
O2—C61.227 (3)C1—C61.511 (3)
O3—C71.303 (3)C2—C31.412 (3)
O4—C71.225 (3)C2—H2A0.9500
O5—C31.321 (3)C3—C41.410 (3)
O5—H5O0.7999C4—C51.370 (3)
O6—C131.306 (3)C4—H4A0.9500
O7—C131.225 (3)C5—C71.516 (3)
O8—C141.305 (3)C8—C91.380 (3)
O9—C141.229 (3)C8—C131.515 (3)
O10—C101.325 (3)C9—C101.413 (3)
O10—H10O0.8000C9—H9A0.9500
O11—H11D0.8199C10—C111.405 (4)
O11—H11C0.8201C11—C121.375 (3)
O12—H12A0.8198C11—H11A0.9500
O12—H12B0.8201C12—C141.514 (3)
N1—C51.339 (3)C15—C161.388 (4)
N1—C11.345 (3)C16—C171.382 (4)
N2—C121.334 (3)C16—H16A0.9500
N2—C81.335 (3)C17—C181.384 (4)
N3—C151.367 (3)C17—H17A0.9500
N3—C191.371 (3)C18—C191.387 (3)
N3—H3NA0.8701C18—H18A0.9500
N2—Cr1—N1177.33 (9)C5—C4—H4A120.9
N2—Cr1—O3103.64 (8)C3—C4—H4A120.9
N1—Cr1—O378.35 (8)N1—C5—C4121.6 (2)
N2—Cr1—O679.04 (8)N1—C5—C7110.3 (2)
N1—Cr1—O6102.70 (8)C4—C5—C7128.0 (2)
O3—Cr1—O693.82 (7)O2—C6—O1124.7 (2)
N2—Cr1—O877.96 (8)O2—C6—C1121.4 (2)
N1—Cr1—O8100.31 (8)O1—C6—C1113.9 (2)
O3—Cr1—O890.88 (7)O4—C7—O3124.6 (2)
O6—Cr1—O8156.99 (7)O4—C7—C5121.8 (2)
N2—Cr1—O1100.15 (8)O3—C7—C5113.6 (2)
N1—Cr1—O177.79 (8)N2—C8—C9120.8 (2)
O3—Cr1—O1156.06 (7)N2—C8—C13111.6 (2)
O6—Cr1—O193.28 (7)C9—C8—C13127.6 (2)
O8—Cr1—O191.46 (7)C8—C9—C10118.0 (2)
C6—O1—Cr1118.37 (15)C8—C9—H9A121.0
C7—O3—Cr1118.46 (15)C10—C9—H9A121.0
C3—O5—H5O120.7O10—C10—C11117.1 (2)
C13—O6—Cr1117.65 (15)O10—C10—C9123.1 (2)
C14—O8—Cr1118.36 (15)C11—C10—C9119.8 (2)
C10—O10—H10O116.5C12—C11—C10117.7 (2)
H11D—O11—H11C113.6C12—C11—H11A121.1
H12A—O12—H12B104.7C10—C11—H11A121.1
C5—N1—C1121.1 (2)N2—C12—C11121.6 (2)
C5—N1—Cr1119.27 (16)N2—C12—C14110.8 (2)
C1—N1—Cr1119.54 (16)C11—C12—C14127.5 (2)
C12—N2—C8121.9 (2)O7—C13—O6126.4 (2)
C12—N2—Cr1119.67 (17)O7—C13—C8120.2 (2)
C8—N2—Cr1118.33 (16)O6—C13—C8113.4 (2)
C15—N3—C19123.3 (2)O9—C14—O8124.9 (2)
C15—N3—H3NA122.3O9—C14—C12122.0 (2)
C19—N3—H3NA114.3O8—C14—C12113.1 (2)
C15—N4—H4NB123.8N4—C15—N3117.4 (2)
C15—N4—H4NA116.6N4—C15—C16124.2 (2)
H4NB—N4—H4NA117.1N3—C15—C16118.5 (2)
C19—N5—H5NB111.0C17—C16—C15118.9 (2)
C19—N5—H5NA117.8C17—C16—H16A120.6
H5NB—N5—H5NA127.1C15—C16—H16A120.6
N1—C1—C2121.5 (2)C16—C17—C18122.1 (2)
N1—C1—C6110.4 (2)C16—C17—H17A118.9
C2—C1—C6128.1 (2)C18—C17—H17A118.9
C1—C2—C3118.0 (2)C17—C18—C19118.5 (2)
C1—C2—H2A121.0C17—C18—H18A120.7
C3—C2—H2A121.0C19—C18—H18A120.7
O5—C3—C4123.6 (2)N5—C19—N3116.8 (2)
O5—C3—C2116.9 (2)N5—C19—C18124.5 (2)
C4—C3—C2119.5 (2)N3—C19—C18118.7 (2)
C5—C4—C3118.2 (2)
N2—Cr1—O1—C6175.80 (17)C3—C4—C5—C7176.5 (2)
N1—Cr1—O1—C62.46 (16)Cr1—O1—C6—O2177.36 (19)
O3—Cr1—O1—C62.3 (3)Cr1—O1—C6—C12.3 (3)
O6—Cr1—O1—C6104.75 (17)N1—C1—C6—O2179.2 (2)
O8—Cr1—O1—C697.77 (17)C2—C1—C6—O20.1 (4)
N2—Cr1—O3—C7177.73 (16)N1—C1—C6—O10.5 (3)
N1—Cr1—O3—C70.44 (17)C2—C1—C6—O1179.8 (2)
O6—Cr1—O3—C7102.64 (17)Cr1—O3—C7—O4177.52 (19)
O8—Cr1—O3—C799.91 (17)Cr1—O3—C7—C50.6 (3)
O1—Cr1—O3—C74.3 (3)N1—C5—C7—O4177.7 (2)
N2—Cr1—O6—C130.10 (17)C4—C5—C7—O40.4 (4)
N1—Cr1—O6—C13178.02 (17)N1—C5—C7—O30.5 (3)
O3—Cr1—O6—C13103.07 (17)C4—C5—C7—O3178.6 (2)
O8—Cr1—O6—C131.7 (3)C12—N2—C8—C90.1 (4)
O1—Cr1—O6—C1399.81 (17)Cr1—N2—C8—C9176.98 (18)
N2—Cr1—O8—C142.31 (17)C12—N2—C8—C13179.5 (2)
N1—Cr1—O8—C14179.77 (17)Cr1—N2—C8—C132.4 (3)
O3—Cr1—O8—C14101.46 (17)N2—C8—C9—C100.4 (4)
O6—Cr1—O8—C140.5 (3)C13—C8—C9—C10178.9 (2)
O1—Cr1—O8—C14102.37 (17)C8—C9—C10—O10178.7 (2)
O3—Cr1—N1—C50.11 (17)C8—C9—C10—C110.9 (4)
O6—Cr1—N1—C591.45 (18)O10—C10—C11—C12178.6 (2)
O8—Cr1—N1—C588.65 (18)C9—C10—C11—C121.0 (4)
O1—Cr1—N1—C5177.91 (19)C8—N2—C12—C110.0 (4)
O3—Cr1—N1—C1175.84 (19)Cr1—N2—C12—C11176.99 (18)
O6—Cr1—N1—C192.83 (18)C8—N2—C12—C14176.2 (2)
O8—Cr1—N1—C187.08 (18)Cr1—N2—C12—C140.8 (3)
O1—Cr1—N1—C12.18 (17)C10—C11—C12—N20.5 (4)
O3—Cr1—N2—C1287.31 (19)C10—C11—C12—C14175.0 (2)
O6—Cr1—N2—C12178.62 (19)Cr1—O6—C13—O7179.5 (2)
O8—Cr1—N2—C120.64 (18)Cr1—O6—C13—C81.1 (3)
O1—Cr1—N2—C1289.97 (19)N2—C8—C13—O7178.4 (2)
O3—Cr1—N2—C889.81 (18)C9—C8—C13—O72.3 (4)
O6—Cr1—N2—C81.50 (18)N2—C8—C13—O62.2 (3)
O8—Cr1—N2—C8177.77 (19)C9—C8—C13—O6177.1 (2)
O1—Cr1—N2—C892.91 (18)Cr1—O8—C14—O9174.9 (2)
C5—N1—C1—C22.1 (3)Cr1—O8—C14—C123.3 (3)
Cr1—N1—C1—C2177.73 (18)N2—C12—C14—O9175.7 (2)
C5—N1—C1—C6177.3 (2)C11—C12—C14—O90.2 (4)
Cr1—N1—C1—C61.6 (3)N2—C12—C14—O82.6 (3)
N1—C1—C2—C30.1 (3)C11—C12—C14—O8178.5 (2)
C6—C1—C2—C3179.1 (2)C19—N3—C15—N4177.6 (2)
C1—C2—C3—O5179.0 (2)C19—N3—C15—C162.1 (4)
C1—C2—C3—C41.2 (3)N4—C15—C16—C17178.2 (2)
O5—C3—C4—C5179.6 (2)N3—C15—C16—C171.5 (4)
C2—C3—C4—C50.6 (3)C15—C16—C17—C181.0 (4)
C1—N1—C5—C42.7 (3)C16—C17—C18—C192.8 (4)
Cr1—N1—C5—C4178.40 (18)C15—N3—C19—N5179.4 (2)
C1—N1—C5—C7175.5 (2)C15—N3—C19—C180.3 (4)
Cr1—N1—C5—C70.2 (3)C17—C18—C19—N5178.2 (2)
C3—C4—C5—N11.4 (4)C17—C18—C19—N32.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3NA···O2i0.872.032.840 (3)154
N4—H4NB···O11i0.872.092.958 (3)173
N4—H4NA···O3ii0.872.333.122 (3)151
N5—H5NB···O80.871.992.831 (3)162
N5—H5NA···O2i0.872.012.812 (3)152
O5—H5O···O120.801.772.560 (2)169
O10—H10O···O11iii0.801.832.624 (3)173
O11—H11C···O10.821.922.719 (2)163
O11—H11D···O7iv0.821.902.709 (3)169
O12—H12A···O9v0.822.012.809 (3)165
O12—H12B···O4ii0.822.052.872 (3)177
C16—H16A···O3ii0.952.493.265 (3)139
C18—H18A···O12vi0.952.593.279 (3)130
Symmetry codes: (i) x, y+2, z; (ii) x1/2, y+5/2, z1/2; (iii) x+1, y+2, z+1; (iv) x1, y, z; (v) x+1/2, y+5/2, z1/2; (vi) x1/2, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C5H8N3)[Cr(C7H3NO5)2]·2H2O
Mr560.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.9590 (4), 20.9904 (12), 14.8951 (8)
β (°) 95.3030 (13)
V3)2166.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.32 × 0.08 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector'
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.829, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
24511, 5229, 3694
Rint0.078
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 1.02
No. of reflections5229
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.57

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3NA···O2i0.872.032.840 (3)154
N4—H4NB···O11i0.872.092.958 (3)173
N4—H4NA···O3ii0.872.333.122 (3)151
N5—H5NB···O80.871.992.831 (3)162
N5—H5NA···O2i0.872.012.812 (3)152
O5—H5O···O120.801.772.560 (2)169
O10—H10O···O11iii0.801.832.624 (3)173
O11—H11C···O10.821.922.719 (2)163
O11—H11D···O7iv0.821.902.709 (3)169
O12—H12A···O9v0.822.012.809 (3)165
O12—H12B···O4ii0.822.052.872 (3)177
C16—H16A···O3ii0.952.493.265 (3)139
C18—H18A···O12vi0.952.593.279 (3)130
Symmetry codes: (i) x, y+2, z; (ii) x1/2, y+5/2, z1/2; (iii) x+1, y+2, z+1; (iv) x1, y, z; (v) x+1/2, y+5/2, z1/2; (vi) x1/2, y+5/2, z+1/2.
 

References

First citationAghabozorg, H., Ghadermazi, M., Soleimannejad, J. & Sheshmani, S. (2007). Acta Cryst. E63, m1917–m1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Saadaty, S., Motyeian, E., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRanjbar, M., Aghabozorg, H., Moghimi, A. & Yanovsky, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 626–628.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Aghabozorg, H. & Hooshmand, S. (2008). Acta Cryst. E64, m564–m565.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1208-m1209
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds