organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl N′-[1-(4-meth­oxy­phen­yl)ethyl­­idene]hydrazine­carboxyl­ate

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, bZhejiang Xinan Chemical Industrial Group Co. Ltd, Jiande 311604, People's Republic of China, and cResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 27 July 2008; accepted 30 July 2008; online 6 August 2008)

The mol­ecule of the title compound, C11H14N2O3, adopts a trans configuration with respect to the C=N bond. The dihedral angle between the benzene ring and the hydrazinecarboxyl­ate plane is 12.06 (9)°. Mol­ecules are linked into a one-dimensional network by N—H⋯O hydrogen bonds and C—H⋯π inter­actions. The benzene rings of inversion-related mol­ecules are stacked with their centroids separated by 3.777 (1) Å, indicating ππ inter­actions.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]). For related structures, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O3

  • Mr = 222.24

  • Monoclinic, P 21 /c

  • a = 12.416 (3) Å

  • b = 11.113 (3) Å

  • c = 8.073 (2) Å

  • β = 95.628 (3)°

  • V = 1108.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.30 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.978

  • 7124 measured reflections

  • 1952 independent reflections

  • 1624 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.07

  • 1952 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.89 (2) 2.01 (2) 2.8864 (17) 169.0
C4—H4⋯Cg1ii 0.93 2.87 3.6488 (19) 142
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1 is the centroid of the benzene ring.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). Meanwhile, it's an important intermidiate of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). As a further investigation of this type of derivatives, the crystal structure of the title compound, C11H14N2O3 (Fig.1), is described here.

The title molecule (Fig.1) adopts a trans configuration with respect to the CN bond. The N1/N2/O2/O3/C10/C11 plane of the hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring. The dihedral angle between the C2—C7 ring and the N1/N2/O2/O3/C10/C11 plane is 12.06 (9)°. The bond lengths and angles agree with those observed for methyl N'-[(E)-4-methoxybenzylidene] hydrazinecarboxylate (Shang et al., 2007).

The molecules are linked into a one-dimensional network by N–H···O hydrogen bonds and C–H···π interactions (Table 1, Fig.2). The benzene rings of the inversion-related molecules are stacked with their centroids separated by a distance of 3.777 (1) Å, indicating π-π interactions.

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al., (1999). For related structures, see: Shang et al. (2007). Cg1 is the centroid of the benzene ring.

Experimental top

4-Methoxy-acetophenone (1.50 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 3.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 80% yield. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 470–472 K).

Refinement top

The H atoms attached N2 were located in a difference map and its position and Uiso values were freely refined. C-bound H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate intermolecular hydrogen bonds.
(E)-Methyl N'-[1-(4-methoxyphenyl)ethylidene]hydrazinecarboxylate top
Crystal data top
C11H14N2O3F(000) = 472
Mr = 222.24Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1952 reflections
a = 12.416 (3) Åθ = 1.6–25.0°
b = 11.113 (3) ŵ = 0.10 mm1
c = 8.073 (2) ÅT = 273 K
β = 95.628 (3)°Block, colourless
V = 1108.5 (5) Å30.30 × 0.26 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1952 independent reflections
Radiation source: fine-focus sealed tube1624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1414
Tmin = 0.972, Tmax = 0.978k = 1311
7124 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.2826P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1952 reflectionsΔρmax = 0.19 e Å3
153 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (4)
Crystal data top
C11H14N2O3V = 1108.5 (5) Å3
Mr = 222.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.416 (3) ŵ = 0.10 mm1
b = 11.113 (3) ÅT = 273 K
c = 8.073 (2) Å0.30 × 0.26 × 0.25 mm
β = 95.628 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1952 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1624 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.978Rint = 0.030
7124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.19 e Å3
1952 reflectionsΔρmin = 0.14 e Å3
153 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H2A0.6796 (14)0.1822 (17)0.308 (2)0.059 (5)*
C70.96977 (11)0.12453 (12)0.16378 (16)0.0297 (3)
C80.85779 (11)0.12580 (12)0.21369 (16)0.0317 (3)
C100.62251 (11)0.29834 (13)0.14528 (18)0.0348 (3)
C31.18244 (11)0.12536 (13)0.07457 (18)0.0341 (3)
C51.04408 (11)0.03686 (13)0.22113 (17)0.0351 (4)
H51.02230.02360.29020.042*
C61.00522 (11)0.21282 (12)0.05809 (17)0.0348 (4)
H60.95740.27270.01740.042*
C21.14990 (11)0.03671 (13)0.17850 (18)0.0375 (4)
H21.19830.02250.21960.045*
C41.10911 (11)0.21306 (13)0.01308 (18)0.0364 (4)
H41.13050.27200.05870.044*
C11.36336 (12)0.05169 (17)0.0921 (2)0.0551 (5)
H1A1.36910.05740.21130.083*
H1B1.43200.07040.05310.083*
H1C1.34250.02860.05880.083*
C110.44286 (12)0.36579 (16)0.1528 (2)0.0528 (5)
H11A0.46280.44920.15890.079*
H11B0.38100.35290.21320.079*
H11C0.42540.34330.03850.079*
O11.28412 (8)0.13431 (10)0.02268 (14)0.0460 (3)
O30.53202 (8)0.29346 (10)0.22464 (14)0.0467 (3)
O20.63408 (8)0.36576 (10)0.03058 (13)0.0432 (3)
N10.79718 (9)0.21424 (11)0.15959 (14)0.0350 (3)
N20.69424 (10)0.21707 (12)0.21353 (17)0.0391 (3)
C90.82244 (12)0.02704 (14)0.3229 (2)0.0439 (4)
H9A0.83290.05210.43720.066*
H9B0.86460.04390.30820.066*
H9C0.74720.00980.29330.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C70.0318 (7)0.0303 (7)0.0271 (7)0.0005 (5)0.0034 (5)0.0038 (5)
C80.0343 (7)0.0334 (8)0.0277 (7)0.0011 (6)0.0052 (5)0.0037 (6)
C100.0317 (7)0.0391 (8)0.0346 (8)0.0006 (6)0.0082 (6)0.0059 (7)
C30.0301 (7)0.0370 (8)0.0357 (8)0.0004 (6)0.0048 (6)0.0050 (6)
C50.0388 (8)0.0333 (8)0.0336 (8)0.0002 (6)0.0058 (6)0.0038 (6)
C60.0342 (7)0.0328 (8)0.0374 (8)0.0051 (6)0.0041 (6)0.0021 (6)
C20.0362 (8)0.0357 (8)0.0403 (8)0.0086 (6)0.0021 (6)0.0019 (6)
C40.0361 (8)0.0354 (8)0.0386 (8)0.0008 (6)0.0079 (6)0.0049 (6)
C10.0332 (8)0.0649 (12)0.0680 (12)0.0125 (8)0.0084 (8)0.0035 (9)
C110.0314 (8)0.0592 (11)0.0684 (12)0.0078 (7)0.0075 (7)0.0000 (9)
O10.0304 (5)0.0522 (7)0.0565 (7)0.0053 (5)0.0107 (5)0.0060 (5)
O30.0316 (5)0.0567 (7)0.0539 (7)0.0066 (5)0.0153 (5)0.0079 (5)
O20.0425 (6)0.0493 (7)0.0396 (6)0.0093 (5)0.0125 (5)0.0054 (5)
N10.0308 (6)0.0412 (7)0.0345 (7)0.0028 (5)0.0097 (5)0.0002 (5)
N20.0330 (6)0.0467 (8)0.0393 (7)0.0047 (5)0.0131 (5)0.0059 (6)
C90.0379 (8)0.0442 (9)0.0516 (9)0.0011 (7)0.0144 (7)0.0075 (7)
Geometric parameters (Å, º) top
C7—C51.3896 (19)C2—H20.9300
C7—C61.399 (2)C4—H40.9300
C7—C81.4850 (19)C1—O11.4201 (19)
C8—N11.2878 (18)C1—H1A0.9600
C8—C91.500 (2)C1—H1B0.9600
C10—O21.2105 (17)C1—H1C0.9600
C10—N21.3476 (19)C11—O31.4429 (19)
C10—O31.3479 (17)C11—H11A0.9600
C3—O11.3722 (17)C11—H11B0.9600
C3—C21.380 (2)C11—H11C0.9600
C3—C41.392 (2)N1—N21.3905 (16)
C5—C21.390 (2)N2—H2A0.891 (19)
C5—H50.9300C9—H9A0.9600
C6—C41.3740 (19)C9—H9B0.9600
C6—H60.9300C9—H9C0.9600
C5—C7—C6117.16 (13)O1—C1—H1A109.5
C5—C7—C8121.66 (12)O1—C1—H1B109.5
C6—C7—C8121.18 (12)H1A—C1—H1B109.5
N1—C8—C7116.53 (12)O1—C1—H1C109.5
N1—C8—C9124.24 (13)H1A—C1—H1C109.5
C7—C8—C9119.23 (12)H1B—C1—H1C109.5
O2—C10—N2127.18 (13)O3—C11—H11A109.5
O2—C10—O3123.74 (13)O3—C11—H11B109.5
N2—C10—O3109.08 (13)H11A—C11—H11B109.5
O1—C3—C2124.78 (13)O3—C11—H11C109.5
O1—C3—C4115.44 (13)H11A—C11—H11C109.5
C2—C3—C4119.78 (13)H11B—C11—H11C109.5
C7—C5—C2122.07 (13)C3—O1—C1117.08 (12)
C7—C5—H5119.0C10—O3—C11115.40 (12)
C2—C5—H5119.0C8—N1—N2115.82 (12)
C4—C6—C7121.48 (13)C10—N2—N1118.55 (13)
C4—C6—H6119.3C10—N2—H2A117.4 (12)
C7—C6—H6119.3N1—N2—H2A122.0 (11)
C3—C2—C5119.33 (13)C8—C9—H9A109.5
C3—C2—H2120.3C8—C9—H9B109.5
C5—C2—H2120.3H9A—C9—H9B109.5
C6—C4—C3120.17 (13)C8—C9—H9C109.5
C6—C4—H4119.9H9A—C9—H9C109.5
C3—C4—H4119.9H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.89 (2)2.01 (2)2.8864 (17)169.0
C4—H4···Cg1ii0.932.873.6488 (19)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H14N2O3
Mr222.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)12.416 (3), 11.113 (3), 8.073 (2)
β (°) 95.628 (3)
V3)1108.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.972, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
7124, 1952, 1624
Rint0.030
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.07
No. of reflections1952
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.89 (2)2.01 (2)2.8864 (17)169.0
C4—H4···Cg1ii0.932.873.6488 (19)142
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from Hangzhou Vocational and Technical College, China.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohan, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds