organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Hydroxymethyl)ibogaine

aLaboratoire de Chimie des Substances Naturelles, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia, and bLaboratoire des Sciences de Materiaux et d'Environnement, Faculté des Sciences de Sfax, BP 1171, 3000 Sfax, Tunisia
*Correspondence e-mail: mohamed.damak@fss.rnu.tn

(Received 29 July 2008; accepted 6 August 2008; online 9 August 2008)

The title compound (systematic name: 16-hydroxy­methyl-12-methoxy­ibogamine), C21H28N2O2, was prepared by reaction of ibogaine with a formaldehyde–acetic acid solution (pH = 4). The crystal structure of this new product, belonging to the iboga indole family, is stabilized by an inter­molecular O—H⋯N hydrogen bond. The identity of the compound was confirmed by one- and two-dimensional NMR spectroscopic techniques.

Related literature

For related literature on ibogaine and its derivatives, see: Alper et al. (2008[Alper, K. R., Lotsof, H. S. & Kaplan, C. D. (2008). J. Ethnopharmacol. 115, 9-24.]); Levant & Pazdernik (2004[Levant, B. & Pazdernik, T. L. (2004). Brain Res. 1003, 159-167.]); Maisonneuve et al. (1991[Maisonneuve, I. M., Keller, R. W. Jr & Glick, S. D. (1991). Eur. J. Pharmacol. 199, 35-42.]); Soriano-García (1992[Soriano-García, M. (1992). Acta Cryst. C48, 2055-2057.]).

[Scheme 1]

Experimental

Crystal data
  • C21H28N2O2

  • Mr = 340.45

  • Orthorhombic, P 21 21 21

  • a = 8.4990 (10) Å

  • b = 10.2537 (11) Å

  • c = 20.676 (3) Å

  • V = 1801.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.47 × 0.33 × 0.26 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.962, Tmax = 0.981

  • 9906 measured reflections

  • 2131 independent reflections

  • 1225 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.123

  • S = 1.00

  • 2131 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N4i 0.82 2.10 2.825 (3) 148
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Ibogaine is the main alkaloid found in the root bark of Tabernanthe iboga (Apocynaceae family), a shrub native to equatorial Africa. Its crystal structure was previously established by M. Soriano-García (1992). It is used, at low doses, to produce increased energy, arousal, and appetite and at high doses, for its hallucinogenic properties (Maisonneuve et al., 1991) and it has been claimed to be effective in abolishing drug craving in heroin and cocaine addicts (Levant & Pazdernik, 2004).

Ibogaine is a psychostimulant of interest as an ethnopharmacological prototype for experimental investigation and possible rational pharmaceutical development (Alper et al., 2008). In this context and in order to prepare other substitutes, we realised the reaction of ibogaine with a formaldehyde-acetic acid solution (pH= 4). This reaction led to 47% of the title compound (Fig. 1).

The current study describes the preparation and the structure elucidation of N-hydroxymethylene ibogaine. Its structure was established principally by two-dimensional NMR spectroscopy and its solid state structure was determined through X-ray diffraction analysis (Fig. 2, Fig. 4).

The conformation of this compound is stabilized by an intermolecular hydrogen bond between the hydroxyl O2—H2 group and atom N4 (Fig. 3).

Related literature top

For related literature on ibogaine and its derivatives, see: Alper et al. (2008); Levant & Pazdernik (2004); Maisonneuve et al. (1991); Soriano-García (1992).

Experimental top

The title compound (2) was prepared by reaction of ibogaine (1) (100 mg, 0.3 mmol) with formaldehyde-acetic acid solution (pH= 4) (10 ml). The mixture was stirred at room temperature for 2 h. Then, the mixture was diluted with H2O, made alkaline with an NH4OH solution (pH = 9) and immediately extracted with CH2Cl2. The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure. The concentrate was then purified by chromatography on silica gel column with dichloromethane as eluent to yield 47% of the title compound.

N-hydroxymethylene ibogaïne (2), white crystals (CH2Cl2), C21H28N2O2: 340, m.p. 436 K, UV: λmax(EtOH) nm = 209, 287, 230. IR: (KBr) νmax(cm-1): 3448, 3101,2935,1617, 1586, 1482, 1456. Spectroscopic analysis, 1H NMR (300 MHz; CDCl3-d6, p.p.m.): 0.91 (t, J = 7.2 Hz, 3H, Me18); 1.26 (m, 2H, H15); 1.61 (m, 1H, H19); 1.62 (m, 1H, H17); 1.75 (m, 1H, H19); 1.83 (m, 1H, H20); 1.95 (m, 1H, H14); 2.13 (m, 1H, H17); 2.56 (m, 1H, H6); 2.89 (m, 1H, H21); 2.90 (m, 1H, H16); 2.95 (m, 1H, H3); 3.12 (m, 1H, H5); 3.26 (m, 1H, H3); 3.30 (m, 1H, H6); 3.31 (m, 1H, H5); 3.85 (s, 3H, CH3—O); 5.50 (dd, J= 11.7, 2H, N1—CH2OH); 6.83 (dd, J = 8.7, 2.4, 1H, aromatic H, H11); 6.90 (d, J = 2.4, 1H, aromatic H, H9); 7.25 (d, J = 8.7, 1H, aromatic H, H12). 13C NMR (75 MHz; CDCl3-d6, p.p.m.): 11.9, C18; 20.2, C6; 25.7, C14; 27.6, C19; 29.7, C15; 33.4, C17; 41.7, C16; 41.7, C20; 50.3, C3; 54.6, C5; 56.1, O—CH3; 58.2, C21; 66.2, N1—CH2OH; 100.9, C9; 109.7, C7; 110.2, C12; 111.2, C11; 128.9, C8; 142.3, C2; 154.5, C10. Repeated recrystallizations from dichloromethane afforded white crystals suitable for single crystal X-ray diffraction.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (Cmethine), 0.97 Å (Cmethylene), 0.96 Å (Cmethyl), 0.93 Å (CH2) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(Cmethylene, methine, CH2) or Uiso(H) = 1.5Ueq(Cmethyl, O).

In the absence of anomalous scattering Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SMART (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Chemical pathway of the formation of the N-hydroxymethylene ibogaine (2).
[Figure 2] Fig. 2. ORTEP drawing of the title compound with the atom-labelling scheme. Ellispsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Partial packing view showing the formation of intermolecular O–H···N hydrogen bonds.
[Figure 4] Fig. 4. The crystal paking of the N-hydroxymethylene ibogaine structure along [001].
16-Hydroxymethyl-12-methoxyibogamine top
Crystal data top
C21H28N2O2Dx = 1.255 Mg m3
Mr = 340.45Melting point: 436 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: P 2ac 2abCell parameters from 2130 reflections
a = 8.499 (1) Åθ = 3.2–24.5°
b = 10.2537 (11) ŵ = 0.08 mm1
c = 20.676 (3) ÅT = 293 K
V = 1801.8 (4) Å3Prism, colourless
Z = 40.47 × 0.33 × 0.26 mm
F(000) = 736
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2131 independent reflections
Radiation source: fine-focus sealed tube1225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ϕ and ω scansθmax = 26.4°, θmin = 2.0°
Absorption correction: multi-scan
(Coppens et al., 1965)
h = 1010
Tmin = 0.962, Tmax = 0.981k = 1211
9906 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2131 reflectionsΔρmax = 0.25 e Å3
228 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C21H28N2O2V = 1801.8 (4) Å3
Mr = 340.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.499 (1) ŵ = 0.08 mm1
b = 10.2537 (11) ÅT = 293 K
c = 20.676 (3) Å0.47 × 0.33 × 0.26 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2131 independent reflections
Absorption correction: multi-scan
(Coppens et al., 1965)
1225 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.981Rint = 0.079
9906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
2131 reflectionsΔρmin = 0.17 e Å3
228 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All esds are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3015 (3)0.7399 (3)0.67173 (13)0.0699 (10)
O20.4685 (2)0.3819 (3)0.37616 (16)0.0749 (10)
N10.2906 (3)0.5196 (3)0.42942 (14)0.0473 (10)
N40.2039 (3)0.3716 (3)0.39872 (13)0.0444 (10)
C20.1436 (4)0.4598 (4)0.42969 (16)0.0438 (10)
C30.1969 (4)0.2289 (4)0.4092 (2)0.0647 (16)
C50.2164 (3)0.4504 (4)0.45746 (15)0.0466 (12)
C60.0883 (3)0.4396 (4)0.50880 (17)0.0578 (13)
C70.0731 (4)0.4847 (4)0.48818 (15)0.0465 (12)
C80.1799 (4)0.5612 (4)0.52547 (15)0.0451 (11)
C90.1706 (4)0.6143 (4)0.58812 (16)0.0478 (10)
C100.2951 (4)0.6835 (4)0.61088 (18)0.0529 (13)
C110.4272 (4)0.7052 (4)0.5718 (2)0.0566 (15)
C120.4392 (4)0.6560 (4)0.51093 (19)0.0558 (15)
C130.3148 (3)0.5818 (3)0.48816 (16)0.0449 (13)
C140.0654 (4)0.1689 (4)0.36909 (19)0.0612 (15)
C150.0987 (5)0.1998 (5)0.2990 (2)0.0750 (18)
C160.0864 (3)0.3789 (4)0.37486 (16)0.0454 (12)
C170.0882 (4)0.2308 (4)0.38900 (18)0.0586 (13)
C180.2517 (6)0.3734 (8)0.1820 (3)0.140 (4)
C190.2565 (4)0.3954 (7)0.2521 (2)0.100 (3)
C200.1088 (4)0.3479 (5)0.28785 (18)0.0602 (16)
C210.0813 (3)0.4137 (4)0.35298 (14)0.0431 (12)
C220.4069 (4)0.5073 (4)0.37864 (17)0.0572 (13)
C230.1784 (5)0.7078 (5)0.71452 (18)0.0777 (16)
H20.562200.385400.366950.1121*
H3A0.296650.189870.397140.0776*
H3B0.178740.211050.454670.0776*
H5A0.315770.429010.477960.0558*
H5B0.222400.541070.444370.0558*
H6A0.120320.490330.546160.0692*
H6B0.081020.349260.522340.0692*
H90.081220.602190.613370.0573*
H110.509660.755010.588040.0679*
H120.527560.671520.485560.0670*
H140.061430.074300.375740.0738*
H15A0.197140.159430.286290.0903*
H15B0.015750.163690.272190.0903*
H160.156780.394450.338130.0547*
H17A0.174110.190260.365530.0701*
H17B0.105510.216570.434830.0701*
H18A0.346560.406160.162670.2104*
H18B0.242680.281700.173450.2104*
H18C0.162700.418110.163880.2104*
H19A0.347610.350950.269800.1201*
H19B0.269620.487970.260160.1201*
H200.018940.371120.260500.0723*
H210.088480.508360.347300.0517*
H22A0.358970.528300.337370.0686*
H22B0.491450.569000.386240.0686*
H23A0.198680.746050.756080.1165*
H23B0.171770.614790.718820.1165*
H23C0.080780.740870.697830.1165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0692 (14)0.082 (2)0.0586 (15)0.0123 (17)0.0034 (16)0.0077 (18)
O20.0368 (11)0.078 (2)0.110 (2)0.0021 (13)0.0146 (16)0.023 (2)
N10.0333 (14)0.051 (2)0.0577 (17)0.0022 (14)0.0062 (15)0.0010 (17)
N40.0345 (12)0.046 (2)0.0527 (17)0.0025 (13)0.0077 (14)0.0075 (17)
C20.0309 (14)0.048 (2)0.0525 (18)0.0080 (15)0.0009 (16)0.008 (2)
C30.061 (2)0.055 (3)0.078 (3)0.003 (2)0.012 (2)0.011 (2)
C50.0295 (14)0.062 (3)0.0484 (17)0.0091 (15)0.0095 (16)0.000 (2)
C60.0319 (15)0.087 (3)0.0545 (19)0.0096 (18)0.0043 (18)0.008 (2)
C70.0367 (15)0.058 (3)0.0449 (16)0.0021 (17)0.0018 (17)0.007 (2)
C80.0375 (16)0.047 (2)0.0508 (19)0.0016 (16)0.0019 (16)0.007 (2)
C90.0363 (14)0.052 (2)0.0551 (19)0.0004 (16)0.0013 (17)0.004 (2)
C100.0477 (17)0.053 (3)0.058 (2)0.0073 (19)0.007 (2)0.001 (2)
C110.0418 (15)0.051 (3)0.077 (3)0.0054 (19)0.003 (2)0.008 (2)
C120.0453 (18)0.054 (3)0.068 (3)0.0033 (18)0.005 (2)0.002 (2)
C130.0349 (16)0.047 (3)0.0529 (19)0.0033 (16)0.0003 (18)0.004 (2)
C140.0517 (19)0.054 (3)0.078 (3)0.002 (2)0.008 (2)0.001 (2)
C150.058 (2)0.090 (4)0.077 (3)0.009 (2)0.008 (2)0.022 (3)
C160.0328 (14)0.058 (3)0.0455 (17)0.0030 (17)0.0000 (17)0.005 (2)
C170.0548 (18)0.055 (3)0.066 (2)0.0097 (19)0.005 (2)0.002 (2)
C180.089 (4)0.248 (9)0.084 (4)0.016 (5)0.013 (3)0.027 (5)
C190.041 (2)0.198 (7)0.061 (3)0.001 (3)0.0052 (19)0.016 (4)
C200.0376 (16)0.089 (4)0.054 (2)0.0018 (19)0.0005 (18)0.002 (3)
C210.0339 (15)0.052 (3)0.0433 (16)0.0035 (16)0.0012 (16)0.009 (2)
C220.0332 (16)0.081 (3)0.0575 (19)0.0033 (18)0.0057 (18)0.001 (3)
C230.077 (2)0.105 (4)0.051 (2)0.002 (3)0.002 (2)0.007 (3)
Geometric parameters (Å, º) top
O1—C101.386 (5)C20—C211.524 (5)
O1—C231.409 (5)C3—H3A0.9701
O2—C221.389 (5)C3—H3B0.9701
O2—H20.8196C5—H5A0.9701
N1—C21.392 (4)C5—H5B0.9696
N1—C221.447 (4)C6—H6A0.9702
N1—C131.387 (4)C6—H6B0.9697
N4—C31.480 (5)C9—H90.9301
N4—C211.472 (4)C11—H110.9299
N4—C51.463 (4)C12—H120.9297
C2—C71.374 (5)C14—H140.9803
C2—C161.486 (5)C15—H15A0.9697
C3—C141.522 (5)C15—H15B0.9702
C5—C61.525 (4)C16—H160.9798
C6—C71.509 (4)C17—H17A0.9703
C7—C81.426 (5)C17—H17B0.9700
C8—C131.398 (4)C18—H18A0.9605
C8—C91.407 (5)C18—H18B0.9598
C9—C101.358 (5)C18—H18C0.9606
C10—C111.401 (5)C19—H19A0.9702
C11—C121.360 (6)C19—H19B0.9701
C12—C131.385 (5)C20—H200.9797
C14—C151.510 (6)C21—H210.9796
C14—C171.509 (5)C22—H22A0.9698
C15—C201.538 (7)C22—H22B0.9702
C16—C171.547 (6)C23—H23A0.9602
C16—C211.537 (4)C23—H23B0.9595
C18—C191.467 (8)C23—H23C0.9604
C19—C201.536 (6)
O2···C3i3.319 (4)H5A···O2iv2.8329
O2···C5i3.239 (4)H5A···H2iv2.5581
O2···N4i2.825 (3)H5A···H3B2.5657
O2···C163.248 (3)H5A···H17Bv2.4346
O1···H20ii2.8425H5B···H212.3315
O1···H21iii2.7735H5B···C10vii3.0501
O2···H3Ai2.8371H5B···C11vii2.9150
O2···H5Ai2.8329H6A···C92.9124
O2···H162.7665H6A···H92.4861
O2···H19Ai2.7165H6B···C32.8223
N4···O2iv2.825 (3)H6B···H3B2.1577
N4···H2iv2.0984H9···C63.0870
N4···H19A2.9397H9···C232.4957
C3···O2iv3.319 (4)H9···H6A2.4861
C3···C8v3.431 (6)H9···H23B2.3157
C5···O2iv3.239 (4)H9···H23C2.2520
C8···C3vi3.431 (6)H9···H18Aix2.2414
C16···O23.248 (3)H12···C222.9621
C3···H2iv2.7441H12···H22B2.3273
C3···H6B2.8223H12···C8iii3.0396
C5···H2iv2.7362H12···C9iii2.9363
C6···H93.0870H14···C9v3.0798
C6···H3B2.7084H14···C10v2.9242
C7···H17B2.9751H14···C11v3.0658
C8···H3Avi3.0377H15A···H3A2.4629
C8···H12vii3.0396H15A···H19A2.3682
C8···H3Bvi3.0667H15B···H17A2.5303
C9···H23B2.7024H16···O22.7665
C9···H23C2.7226H16···C153.0582
C9···H6A2.9124H16···C222.5611
C9···H14vi3.0798H16···H202.2054
C9···H12vii2.9363H16···H22A2.1993
C10···H5Biii3.0501H16···C23x3.0973
C10···H14vi2.9242H16···H23Ax2.5422
C11···H5Biii2.9150H17A···H15B2.5303
C11···H14vi3.0658H17A···H23Ax2.5916
C11···H18Cii3.0380H17B···C72.9751
C12···H22B2.7640H17B···H3B2.4511
C15···H163.0582H17B···H5Avi2.4346
C15···H18B2.9902H18A···H9viii2.2414
C16···H22A2.8834H18B···C152.9902
C18···H23Cviii3.0500H18C···H202.3908
C19···H2iv2.8326H18C···C11x3.0380
C21···H2iv3.0574H19A···O2iv2.7165
C22···H122.9621H19A···N42.9397
C22···H162.5611H19A···H2iv2.1788
C23···H92.4957H19A···H15A2.3682
C23···H16ii3.0973H19A···C23viii3.0941
C23···H19Aix3.0941H19B···H212.3791
H2···N4i2.0984H20···H162.2054
H2···C3i2.7441H20···H18C2.3908
H2···C5i2.7362H20···O1x2.8425
H2···C19i2.8326H21···H5B2.3315
H2···C21i3.0574H21···H19B2.3791
H2···H3Ai2.4183H21···O1vii2.7735
H2···H5Ai2.5581H22A···C162.8834
H2···H19Ai2.1788H22A···H162.1993
H3A···O2iv2.8371H22B···C122.7640
H3A···H2iv2.4183H22B···H122.3273
H3A···H15A2.4629H23A···H16ii2.5421
H3A···C8v3.0377H23A···H17Aii2.5916
H3B···C62.7084H23B···C92.7024
H3B···H5A2.5657H23B···H92.3157
H3B···H6B2.1577H23C···C92.7226
H3B···H17B2.4511H23C···H92.2520
H3B···C8v3.0667H23C···C18ix3.0500
C10—O1—C23116.3 (3)C5—C6—H6A108.37
C22—O2—H2109.52C5—C6—H6B108.42
C2—N1—C13109.4 (3)C7—C6—H6A108.40
C2—N1—C22125.3 (3)C7—C6—H6B108.44
C13—N1—C22125.0 (3)H6A—C6—H6B107.47
C3—N4—C5115.3 (3)C8—C9—H9120.72
C3—N4—C21110.8 (3)C10—C9—H9120.77
C5—N4—C21115.0 (3)C10—C11—H11118.88
N1—C2—C16122.4 (3)C12—C11—H11118.78
C7—C2—C16129.2 (3)C11—C12—H12121.28
N1—C2—C7108.3 (3)C13—C12—H12121.25
N4—C3—C14110.4 (3)C3—C14—H14110.42
N4—C5—C6119.1 (3)C15—C14—H14110.40
C5—C6—C7115.5 (3)C17—C14—H14110.38
C2—C7—C8107.5 (3)C14—C15—H15A109.40
C6—C7—C8126.5 (3)C14—C15—H15B109.39
C2—C7—C6126.0 (3)C20—C15—H15A109.43
C7—C8—C13107.9 (3)C20—C15—H15B109.37
C9—C8—C13119.7 (3)H15A—C15—H15B108.01
C7—C8—C9132.4 (3)C2—C16—H16107.50
C8—C9—C10118.5 (3)C17—C16—H16107.47
O1—C10—C9124.3 (3)C21—C16—H16107.47
O1—C10—C11115.2 (3)C14—C17—H17A109.54
C9—C10—C11120.5 (3)C14—C17—H17B109.54
C10—C11—C12122.3 (3)C16—C17—H17A109.49
C11—C12—C13117.5 (3)C16—C17—H17B109.50
N1—C13—C8107.0 (3)H17A—C17—H17B108.06
C8—C13—C12121.4 (3)C19—C18—H18A109.51
N1—C13—C12131.6 (3)C19—C18—H18B109.56
C3—C14—C15107.5 (3)C19—C18—H18C109.50
C15—C14—C17109.6 (3)H18A—C18—H18B109.45
C3—C14—C17108.5 (3)H18A—C18—H18C109.38
C14—C15—C20111.2 (4)H18B—C18—H18C109.44
C2—C16—C17113.6 (3)C18—C19—H19A108.82
C2—C16—C21113.5 (3)C18—C19—H19B108.86
C17—C16—C21107.0 (3)C20—C19—H19A108.77
C14—C17—C16110.7 (3)C20—C19—H19B108.75
C18—C19—C20113.8 (4)H19A—C19—H19B107.64
C15—C20—C21107.2 (3)C15—C20—H20106.43
C19—C20—C21114.2 (4)C19—C20—H20106.40
C15—C20—C19115.5 (4)C21—C20—H20106.43
N4—C21—C16113.5 (3)N4—C21—H21108.88
C16—C21—C20107.4 (3)C16—C21—H21108.85
N4—C21—C20109.2 (3)C20—C21—H21108.85
O2—C22—N1111.4 (3)O2—C22—H22A109.35
N4—C3—H3A109.57O2—C22—H22B109.29
N4—C3—H3B109.56N1—C22—H22A109.39
C14—C3—H3A109.57N1—C22—H22B109.36
C14—C3—H3B109.57H22A—C22—H22B107.99
H3A—C3—H3B108.08O1—C23—H23A109.46
N4—C5—H5A107.53O1—C23—H23B109.51
N4—C5—H5B107.56O1—C23—H23C109.47
C6—C5—H5A107.52H23A—C23—H23B109.49
C6—C5—H5B107.55H23A—C23—H23C109.41
H5A—C5—H5B107.04H23B—C23—H23C109.48
C23—O1—C10—C98.4 (6)C6—C7—C8—C13179.5 (3)
C23—O1—C10—C11173.2 (4)C6—C7—C8—C90.3 (7)
C13—N1—C2—C16176.6 (3)C2—C7—C8—C130.2 (4)
C13—N1—C2—C70.6 (4)C7—C8—C13—C12178.5 (3)
C22—N1—C2—C7174.5 (3)C7—C8—C13—N10.2 (4)
C2—N1—C13—C12178.5 (4)C13—C8—C9—C100.7 (6)
C22—N1—C13—C127.5 (6)C7—C8—C9—C10179.5 (4)
C2—N1—C22—O268.4 (4)C9—C8—C13—N1179.7 (3)
C13—N1—C22—O2104.6 (4)C9—C8—C13—C121.4 (5)
C22—N1—C2—C162.7 (6)C8—C9—C10—C112.3 (6)
C22—N1—C13—C8174.4 (3)C8—C9—C10—O1179.5 (4)
C2—N1—C13—C80.5 (4)O1—C10—C11—C12179.7 (4)
C5—N4—C21—C1674.8 (4)C9—C10—C11—C121.8 (6)
C3—N4—C21—C1658.2 (4)C10—C11—C12—C130.2 (6)
C5—N4—C21—C20165.3 (3)C11—C12—C13—C81.8 (5)
C5—N4—C3—C14133.2 (3)C11—C12—C13—N1179.6 (4)
C21—N4—C3—C140.3 (4)C17—C14—C15—C2059.4 (4)
C21—N4—C5—C672.2 (4)C3—C14—C17—C1662.3 (4)
C3—N4—C21—C2061.6 (4)C3—C14—C15—C2058.3 (4)
C3—N4—C5—C658.7 (4)C15—C14—C17—C1654.8 (4)
N1—C2—C7—C6179.2 (3)C14—C15—C20—C19128.7 (3)
C7—C2—C16—C1770.8 (5)C14—C15—C20—C210.1 (4)
N1—C2—C16—C17105.7 (4)C2—C16—C21—C20166.7 (3)
C16—C2—C7—C8176.5 (4)C17—C16—C21—N453.7 (4)
N1—C2—C16—C21131.7 (3)C2—C16—C21—N472.4 (4)
C16—C2—C7—C63.8 (7)C2—C16—C17—C14133.0 (3)
N1—C2—C7—C80.5 (4)C17—C16—C21—C2067.2 (4)
C7—C2—C16—C2151.7 (5)C21—C16—C17—C146.9 (4)
N4—C3—C14—C1759.5 (4)C18—C19—C20—C21157.5 (5)
N4—C3—C14—C1559.0 (4)C18—C19—C20—C1577.5 (6)
N4—C5—C6—C764.4 (5)C19—C20—C21—N468.8 (5)
C5—C6—C7—C8137.5 (4)C19—C20—C21—C16167.7 (4)
C5—C6—C7—C242.2 (6)C15—C20—C21—C1663.0 (4)
C2—C7—C8—C9180.0 (4)C15—C20—C21—N460.5 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y+3/2, z+1; (iv) x1, y, z; (v) x1/2, y+1/2, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x1/2, y+3/2, z+1; (viii) x1/2, y+1, z1/2; (ix) x1/2, y+1, z+1/2; (x) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N4i0.82002.10002.825 (3)148.00
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H28N2O2
Mr340.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.499 (1), 10.2537 (11), 20.676 (3)
V3)1801.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.33 × 0.26
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(Coppens et al., 1965)
Tmin, Tmax0.962, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9906, 2131, 1225
Rint0.079
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 1.00
No. of reflections2131
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N4i0.82002.10002.825 (3)148.00
Symmetry code: (i) x+1, y, z.
 

References

First citationAlper, K. R., Lotsof, H. S. & Kaplan, C. D. (2008). J. Ethnopharmacol. 115, 9–24.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLevant, B. & Pazdernik, T. L. (2004). Brain Res. 1003, 159–167.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaisonneuve, I. M., Keller, R. W. Jr & Glick, S. D. (1991). Eur. J. Pharmacol. 199, 35–42.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoriano-García, M. (1992). Acta Cryst. C48, 2055–2057.  CSD CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds