metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Perchlorato[N,N,N′,N′-tetra­kis(2-pyridyl­meth­yl)cyclo­hexane-1,2-di­amine]manganese(II) perchlorate

aDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea, and bSchool of Applied Chemical Engineering, Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 5 August 2008; accepted 11 August 2008; online 16 August 2008)

The asymmetric unit of the title compound, [Mn(ClO4)(C30H34N6)]ClO4, consists of a cationic [Mn(ClO4)(C30H34N6)]+ complex and a perchlorate anion. In the complex, the Mn2+ ion is seven-coordinated in an approximately penta­gonal–bipyramidal environment by six N atoms from the hexa­dentate N,N,N′,N′-tetra­kis(2-pyridylmeth­yl)­cyclo­hexane-1,2-diamine (tpdach) ligand and one O atom from a perchlorate anion. The complex displays inter­molecular ππ inter­actions between adjacent pyridine rings (centroid-to-centroid distance 4.133 Å). Moreover, there are weak intra- and inter­molecular C—H⋯O hydrogen bonds. The Cl atom and two O atoms of the perchlorate are disordered, with a site-occupancy factor of 0.59 (2) for the major component.

Related literature

For details of some other tpdach complexes, see: Hwang & Ha (2006[Hwang, I.-C. & Ha, K. (2006). Z. Kristallogr. New Cryst. Struct. 221, 468-470.]); McCusker et al. (1993[McCusker, J. K., Toftlund, H., Rheingold, A. L. & Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1797-1804.]). For the synthesis of the ligand, see: Toftlund & Yde-Anderson (1981[Toftlund, H. & Yde-Anderson, S. (1981). Acta Chem. Scand. A, 35, 575-585.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(ClO4)(C30H34N6)]ClO4

  • Mr = 732.47

  • Monoclinic, C c

  • a = 14.223 (5) Å

  • b = 14.121 (5) Å

  • c = 16.504 (6) Å

  • β = 105.987 (6)°

  • V = 3186.6 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 (2) K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.690, Tmax = 0.879

  • 9661 measured reflections

  • 5412 independent reflections

  • 4446 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.093

  • S = 0.96

  • 5412 reflections

  • 452 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1804 Friedel pairs

  • Flack parameter: 0.007 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.93 2.41 3.006 (5) 122
C17—H17A⋯O2i 0.97 2.48 3.413 (5) 161
C18—H18⋯O8ii 0.98 2.47 3.436 (6) 170
C20—H20⋯O6 0.93 2.46 3.347 (6) 159
C25—H25⋯O1 0.93 2.46 3.038 (5) 121
C25—H25⋯O2 0.93 2.51 3.199 (5) 131
C28—H28⋯O8iii 0.93 2.48 3.243 (6) 139
C30—H30A⋯O3Ai 0.97 2.55 3.434 (11) 152
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title compound consists of a cationic complex, [Mn(ClO4)(C30H34N6)]+, and a ClO4- anion (Fig. 1). In the cation, the Mn2+ ion is seven-coordinated by six N atoms from tpdach and one O atom from a ClO4- ligand in an approximately pentagonal bipyramidal structure, in which the N2, N3, N4, N6 and O1 atoms form the pentagonal plane with the N1 and N5 atoms at the apices. In the analogous Fe2+ compound [Fe(C30H34N6)](ClO4)2 the Fe ion is six-coordinated in a distorted octahedral environment (McCusker et al. 1993). The apical N1—Mn1—N5 bond angle is 176.0 (1)°, and the Mn1—N1 and Mn1—N5 bond lengths are nearly equivalent (2.294 (3) Å and 2.273 (3) Å, respectively) and shorter than the Mn1—N bonds for N2, N3, N4 and N6 in the equatorial plane (2.388 (3) Å to 2.422 (3) Å). Within the plane, the chelating angles lie in the range of 70.76 (9) to 74.13 (9)° and the O1—Mn1—N bond angles for N2 and N6 are 78.9 (1)° and 78.1 (1), respectively. The complex displays intermolecular ππ interactions between adjacent pyridine rings. The shortest distance between Cg1 (the centroid of six-membered ring N2–C11) and Cg2a (ring N6–C29, symmetry code a: 1/2 + x,-1/2 + y,z) is 4.133 Å, and the dihedral angle between the ring planes is 6.59°. The C10···C27a and C11···C27a distances are 3.469 Å and 3.491 Å, respectively. Moreover, there are intra- and intermolecular hydrogen bonds between the C and O atoms with d(C···O) = 3.006 Å to 3.436 Å (Fig. 2, Table 1).

Related literature top

For details of some other tpdach complexes, see: Hwang & Ha (2006); McCusker et al. (1993). For the synthesis of the ligand, see: Toftlund & Yde-Anderson (1981).

Experimental top

N,N,N',N'-Tetrakis(2-pyridylmethyl)cyclohexane-1,2-diamine (tpdach), C30H34N6, was synthesized according to a literature procedure (Toftlund & Yde-Anderson, 1981). Mn(ClO4)2.6H2O (0.61 g, 1.69 mmol) and tpdach (0.40 g, 0.84 mmol) in EtOH (10 ml) were stirred for 2 h at room temperature. The solvent was removed in vacuo, the residue recrystallized from acetone–ether and filtered, to give a dark yellow powder (0.44 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone–ethyl acetate solution. MS (FAB): m/z 632, 634 (Mn(tpdach)(ClO4)+).

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.93 (aromatic CH), 0.97 (CH2) or 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C)]. The ClO4- anions (particularly Cl1, O3 and O4) displayed relatively large displacement factors so that the anions appeared to be partially disordered. Atoms Cl1, O3 and O4 were thus modelled anisotropically as disordered over two sites, with a site occupancy factor of 0.59 (2) for the major component. Floating origin restraints were generated automatically by the program SHELXL97.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity, and only the major component of the disordered atoms Cl, O3 and O4 is shown.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn as dashed lines.
Perchlorato[N,N,N',N'-tetrakis(2- pyridylmethyl)cyclohexane-1,2-diamine]manganese(II) perchlorate top
Crystal data top
[Mn(ClO4)(C30H34N6)]ClO4F(000) = 1516
Mr = 732.47Dx = 1.527 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3537 reflections
a = 14.223 (5) Åθ = 2.6–22.9°
b = 14.121 (5) ŵ = 0.64 mm1
c = 16.504 (6) ÅT = 293 K
β = 105.987 (6)°Stick, yellow
V = 3186.6 (19) Å30.25 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5412 independent reflections
Radiation source: fine-focus sealed tube4446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1118
Tmin = 0.690, Tmax = 0.879k = 1818
9661 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.103P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
5412 reflectionsΔρmax = 0.39 e Å3
452 parametersΔρmin = 0.30 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1804 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (16)
Crystal data top
[Mn(ClO4)(C30H34N6)]ClO4V = 3186.6 (19) Å3
Mr = 732.47Z = 4
Monoclinic, CcMo Kα radiation
a = 14.223 (5) ŵ = 0.64 mm1
b = 14.121 (5) ÅT = 293 K
c = 16.504 (6) Å0.25 × 0.25 × 0.20 mm
β = 105.987 (6)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5412 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4446 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.879Rint = 0.020
9661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.39 e Å3
S = 0.96Δρmin = 0.30 e Å3
5412 reflectionsAbsolute structure: Flack (1983), with 1804 Friedel pairs
452 parametersAbsolute structure parameter: 0.007 (16)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.15888 (5)0.33639 (3)0.36637 (4)0.03769 (12)
N10.2229 (2)0.47899 (19)0.42192 (18)0.0450 (7)
N20.2968 (2)0.2727 (2)0.32882 (19)0.0494 (7)
N30.2886 (2)0.30494 (17)0.49337 (17)0.0385 (6)
N40.0803 (2)0.27813 (17)0.46689 (15)0.0362 (6)
N50.0853 (2)0.19852 (19)0.31237 (16)0.0399 (6)
N60.0022 (2)0.4106 (2)0.34287 (18)0.0465 (7)
C10.1793 (3)0.5634 (2)0.3961 (3)0.0597 (10)
H10.12320.56410.35100.072*
C20.2147 (3)0.6482 (2)0.4339 (3)0.0583 (10)
H20.18310.70480.41440.070*
C30.2968 (3)0.6477 (2)0.5004 (2)0.0549 (9)
H30.32170.70370.52760.066*
C40.3421 (3)0.5623 (2)0.5264 (2)0.0483 (8)
H40.39840.56060.57130.058*
C50.3045 (2)0.4795 (2)0.4861 (2)0.0393 (7)
C60.3564 (3)0.3869 (2)0.5087 (2)0.0469 (8)
H6A0.40290.37900.47580.056*
H6B0.39280.38810.56770.056*
C70.3158 (3)0.2794 (3)0.2543 (2)0.0605 (11)
H70.26750.30390.20910.073*
C80.4026 (3)0.2522 (3)0.2405 (3)0.0668 (11)
H80.41290.25830.18740.080*
C90.4742 (3)0.2156 (3)0.3069 (3)0.0619 (10)
H90.53450.19780.30000.074*
C100.4550 (3)0.2060 (3)0.3832 (3)0.0567 (9)
H100.50200.18060.42880.068*
C110.3656 (3)0.2342 (2)0.3920 (2)0.0446 (8)
C120.3408 (3)0.2206 (2)0.4749 (2)0.0472 (8)
H12A0.30010.16500.47170.057*
H12B0.40040.21110.51990.057*
C130.2477 (2)0.2910 (2)0.5668 (2)0.0401 (7)
H130.23140.35400.58380.048*
C140.3198 (3)0.2466 (3)0.6443 (2)0.0504 (9)
H14A0.33820.18400.62990.060*
H14B0.37850.28500.66080.060*
C150.2752 (3)0.2392 (3)0.7173 (2)0.0556 (10)
H15A0.32240.21200.76580.067*
H15B0.25800.30180.73270.067*
C160.1864 (3)0.1786 (3)0.6929 (2)0.0541 (10)
H16A0.15890.17220.74030.065*
H16B0.20390.11590.67790.065*
C170.1106 (3)0.2223 (3)0.6182 (2)0.0491 (9)
H17A0.09040.28330.63440.059*
H17B0.05340.18170.60230.059*
C180.1528 (2)0.2349 (2)0.54187 (18)0.0381 (7)
H180.16860.17170.52510.046*
C190.0988 (3)0.1550 (3)0.2434 (2)0.0496 (8)
H190.13630.18520.21290.060*
C200.0597 (3)0.0692 (3)0.2171 (2)0.0612 (11)
H200.07070.04120.16940.073*
C210.0044 (4)0.0238 (3)0.2606 (3)0.0734 (14)
H210.02170.03580.24400.088*
C220.0122 (4)0.0680 (3)0.3298 (2)0.0645 (11)
H220.05050.03910.36010.077*
C230.0290 (3)0.1558 (2)0.35356 (19)0.0402 (7)
C240.0067 (3)0.2074 (2)0.4259 (2)0.0432 (8)
H24A0.05600.23880.40540.052*
H24B0.00060.16130.46770.052*
C250.0532 (3)0.4527 (3)0.2737 (2)0.0533 (9)
H250.03130.45300.22550.064*
C260.1411 (3)0.4959 (3)0.2703 (3)0.0592 (10)
H260.17730.52510.22110.071*
C270.1740 (3)0.4950 (3)0.3403 (3)0.0617 (11)
H270.23320.52340.33970.074*
C280.1184 (3)0.4515 (3)0.4115 (3)0.0555 (9)
H280.14000.44950.45980.067*
C290.0304 (3)0.4106 (2)0.4119 (2)0.0432 (8)
C300.0319 (3)0.3630 (2)0.4887 (2)0.0441 (8)
H30A0.08120.40710.51950.053*
H30B0.00830.34500.52500.053*
O10.1329 (2)0.3954 (2)0.23005 (16)0.0643 (8)
O20.0969 (4)0.5516 (2)0.1871 (3)0.1098 (14)
Cl1A0.1592 (6)0.4718 (3)0.1811 (5)0.0695 (14)0.589 (18)
O3A0.1337 (14)0.4370 (8)0.0960 (6)0.122 (5)0.589 (18)
O4A0.2592 (6)0.4953 (6)0.2141 (11)0.134 (5)0.589 (18)
Cl1B0.1171 (11)0.4580 (8)0.1590 (6)0.091 (3)0.411 (18)
O3B0.042 (2)0.4334 (16)0.0973 (10)0.214 (13)0.411 (18)
O4B0.2022 (18)0.4735 (14)0.1375 (18)0.147 (12)0.411 (18)
Cl20.16080 (10)0.07166 (10)0.01224 (8)0.0782 (3)
O50.1508 (5)0.1150 (3)0.0657 (3)0.1315 (16)
O60.0759 (4)0.0230 (4)0.0224 (3)0.1293 (16)
O70.2066 (7)0.1294 (5)0.0740 (4)0.221 (4)
O80.2213 (5)0.0077 (4)0.0100 (5)0.198 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0350 (2)0.0365 (2)0.0407 (2)0.0010 (2)0.00912 (18)0.0005 (2)
N10.0405 (15)0.0371 (14)0.0532 (17)0.0025 (13)0.0059 (14)0.0013 (12)
N20.0407 (17)0.0572 (17)0.0521 (17)0.0059 (15)0.0158 (14)0.0105 (14)
N30.0369 (15)0.0316 (12)0.0466 (15)0.0019 (12)0.0108 (12)0.0025 (11)
N40.0351 (14)0.0355 (13)0.0349 (13)0.0010 (11)0.0044 (11)0.0026 (10)
N50.0391 (15)0.0414 (14)0.0392 (14)0.0022 (13)0.0108 (13)0.0024 (12)
N60.0385 (16)0.0507 (15)0.0478 (16)0.0003 (13)0.0074 (14)0.0038 (13)
C10.049 (2)0.0463 (19)0.072 (3)0.0035 (18)0.002 (2)0.0037 (17)
C20.051 (2)0.0386 (19)0.082 (3)0.0042 (17)0.014 (2)0.0030 (18)
C30.060 (2)0.0408 (18)0.065 (2)0.0132 (18)0.019 (2)0.0115 (17)
C40.042 (2)0.051 (2)0.049 (2)0.0118 (17)0.0085 (16)0.0028 (16)
C50.0375 (18)0.0406 (16)0.0423 (18)0.0037 (14)0.0153 (15)0.0026 (14)
C60.0324 (18)0.0448 (18)0.059 (2)0.0030 (15)0.0046 (16)0.0072 (16)
C70.045 (2)0.080 (3)0.056 (2)0.015 (2)0.0142 (19)0.017 (2)
C80.059 (3)0.081 (3)0.070 (3)0.012 (2)0.034 (2)0.017 (2)
C90.046 (2)0.067 (2)0.077 (3)0.015 (2)0.026 (2)0.015 (2)
C100.046 (2)0.060 (2)0.062 (2)0.0140 (19)0.0116 (19)0.0116 (19)
C110.0425 (19)0.0372 (16)0.055 (2)0.0008 (16)0.0143 (17)0.0022 (15)
C120.045 (2)0.0434 (17)0.055 (2)0.0059 (16)0.0163 (17)0.0098 (16)
C130.0408 (18)0.0341 (15)0.0421 (17)0.0045 (15)0.0059 (15)0.0008 (13)
C140.049 (2)0.0505 (19)0.0447 (19)0.0019 (17)0.0003 (16)0.0024 (16)
C150.068 (3)0.052 (2)0.0386 (18)0.008 (2)0.0013 (17)0.0047 (16)
C160.069 (3)0.059 (2)0.0304 (17)0.000 (2)0.0076 (17)0.0110 (16)
C170.050 (2)0.055 (2)0.0418 (18)0.0016 (18)0.0128 (16)0.0034 (16)
C180.0410 (18)0.0382 (16)0.0342 (16)0.0002 (14)0.0088 (14)0.0016 (13)
C190.048 (2)0.057 (2)0.0443 (19)0.0036 (18)0.0127 (16)0.0091 (16)
C200.069 (3)0.063 (2)0.046 (2)0.006 (2)0.007 (2)0.0137 (18)
C210.112 (4)0.046 (2)0.058 (2)0.016 (2)0.017 (3)0.0156 (19)
C220.090 (3)0.054 (2)0.049 (2)0.023 (2)0.018 (2)0.0054 (18)
C230.0395 (18)0.0443 (17)0.0334 (16)0.0040 (15)0.0042 (14)0.0013 (13)
C240.0388 (19)0.0471 (19)0.0436 (18)0.0075 (16)0.0111 (15)0.0021 (14)
C250.048 (2)0.059 (2)0.049 (2)0.0088 (19)0.0076 (18)0.0085 (17)
C260.050 (2)0.052 (2)0.064 (2)0.0024 (19)0.005 (2)0.0071 (18)
C270.049 (2)0.053 (2)0.077 (3)0.0140 (19)0.007 (2)0.005 (2)
C280.043 (2)0.062 (2)0.061 (2)0.0078 (19)0.0129 (18)0.0063 (19)
C290.0392 (19)0.0437 (18)0.0454 (18)0.0006 (16)0.0096 (15)0.0058 (15)
C300.042 (2)0.0504 (18)0.0384 (17)0.0046 (16)0.0093 (15)0.0037 (14)
O10.0731 (19)0.0666 (17)0.0601 (15)0.0186 (15)0.0301 (15)0.0251 (13)
O20.150 (4)0.070 (2)0.134 (3)0.035 (2)0.079 (3)0.039 (2)
Cl1A0.074 (3)0.0625 (15)0.085 (3)0.0218 (18)0.045 (2)0.0324 (15)
O3A0.191 (15)0.126 (9)0.071 (5)0.033 (9)0.074 (8)0.024 (5)
O4A0.075 (5)0.094 (5)0.233 (13)0.011 (4)0.045 (7)0.043 (7)
Cl1B0.088 (5)0.120 (5)0.082 (4)0.040 (4)0.050 (4)0.058 (4)
O3B0.21 (2)0.29 (2)0.089 (10)0.086 (19)0.047 (13)0.089 (12)
O4B0.16 (2)0.140 (16)0.21 (3)0.044 (14)0.16 (2)0.090 (17)
Cl20.0750 (8)0.0931 (8)0.0693 (7)0.0072 (7)0.0246 (6)0.0060 (6)
O50.187 (5)0.102 (3)0.096 (3)0.002 (3)0.022 (3)0.020 (2)
O60.103 (3)0.179 (4)0.121 (3)0.022 (3)0.057 (3)0.033 (3)
O70.325 (12)0.194 (6)0.124 (4)0.119 (7)0.028 (5)0.049 (4)
O80.176 (6)0.116 (4)0.366 (10)0.064 (4)0.184 (7)0.098 (5)
Geometric parameters (Å, º) top
Mn1—N52.273 (3)C14—H14A0.9700
Mn1—N12.294 (3)C14—H14B0.9700
Mn1—O12.331 (3)C15—C161.487 (6)
Mn1—N42.388 (3)C15—H15A0.9700
Mn1—N22.390 (3)C15—H15B0.9700
Mn1—N62.396 (3)C16—C171.527 (5)
Mn1—N32.422 (3)C16—H16A0.9700
N1—C51.338 (4)C16—H16B0.9700
N1—C11.356 (4)C17—C181.548 (5)
N2—C111.334 (4)C17—H17A0.9700
N2—C71.334 (5)C17—H17B0.9700
N3—C121.478 (4)C18—H180.9800
N3—C61.483 (4)C19—C201.355 (5)
N3—C131.495 (4)C19—H190.9300
N4—C241.470 (4)C20—C211.364 (6)
N4—C301.475 (4)C20—H200.9300
N4—C181.505 (4)C21—C221.377 (6)
N5—C231.329 (4)C21—H210.9300
N5—C191.353 (4)C22—C231.381 (5)
N6—C251.335 (4)C22—H220.9300
N6—C291.342 (4)C23—C241.505 (5)
C1—C21.380 (5)C24—H24A0.9700
C1—H10.9300C24—H24B0.9700
C2—C31.365 (6)C25—C261.378 (6)
C2—H20.9300C25—H250.9300
C3—C41.378 (5)C26—C271.361 (6)
C3—H30.9300C26—H260.9300
C4—C51.378 (5)C27—C281.369 (5)
C4—H40.9300C27—H270.9300
C5—C61.497 (5)C28—C291.377 (5)
C6—H6A0.9700C28—H280.9300
C6—H6B0.9700C29—C301.491 (5)
C7—C81.371 (6)C30—H30A0.9700
C7—H70.9300C30—H30B0.9700
C8—C91.374 (6)O1—Cl1B1.437 (7)
C8—H80.9300O1—Cl1A1.457 (5)
C9—C101.367 (5)O2—Cl1A1.454 (7)
C9—H90.9300O2—Cl1B1.456 (11)
C10—C111.378 (5)Cl1A—O4A1.415 (11)
C10—H100.9300Cl1A—O3A1.437 (12)
C11—C121.517 (5)Cl1B—O3B1.30 (2)
C12—H12A0.9700Cl1B—O4B1.369 (16)
C12—H12B0.9700Cl2—O71.327 (5)
C13—C181.520 (5)Cl2—O51.395 (4)
C13—C141.536 (5)Cl2—O81.419 (5)
C13—H130.9800Cl2—O61.439 (5)
C14—C151.512 (5)
N5—Mn1—N1176.02 (11)C15—C14—C13111.2 (3)
N5—Mn1—O189.66 (10)C15—C14—H14A109.4
N1—Mn1—O190.69 (11)C13—C14—H14A109.4
N5—Mn1—N473.98 (9)C15—C14—H14B109.4
N1—Mn1—N4103.60 (10)C13—C14—H14B109.4
O1—Mn1—N4144.44 (10)H14A—C14—H14B108.0
N5—Mn1—N284.18 (10)C16—C15—C14109.6 (3)
N1—Mn1—N299.77 (11)C16—C15—H15A109.8
O1—Mn1—N278.89 (10)C14—C15—H15A109.8
N4—Mn1—N2128.73 (9)C16—C15—H15B109.8
N5—Mn1—N690.22 (10)C14—C15—H15B109.8
N1—Mn1—N685.98 (10)H15A—C15—H15B108.2
O1—Mn1—N678.13 (10)C15—C16—C17110.2 (3)
N4—Mn1—N670.76 (9)C15—C16—H16A109.6
N2—Mn1—N6156.36 (10)C17—C16—H16A109.6
N5—Mn1—N3109.95 (9)C15—C16—H16B109.6
N1—Mn1—N372.01 (9)C17—C16—H16B109.6
O1—Mn1—N3141.38 (10)H16A—C16—H16B108.1
N4—Mn1—N374.13 (9)C16—C17—C18111.0 (3)
N2—Mn1—N370.80 (10)C16—C17—H17A109.4
N6—Mn1—N3132.33 (10)C18—C17—H17A109.4
C5—N1—C1117.7 (3)C16—C17—H17B109.4
C5—N1—Mn1118.9 (2)C18—C17—H17B109.4
C1—N1—Mn1123.3 (2)H17A—C17—H17B108.0
C11—N2—C7117.3 (3)N4—C18—C13111.6 (2)
C11—N2—Mn1115.4 (2)N4—C18—C17112.6 (3)
C7—N2—Mn1127.0 (2)C13—C18—C17110.8 (3)
C12—N3—C6108.9 (3)N4—C18—H18107.2
C12—N3—C13113.0 (2)C13—C18—H18107.2
C6—N3—C13110.2 (2)C17—C18—H18107.2
C12—N3—Mn1106.0 (2)N5—C19—C20122.3 (4)
C6—N3—Mn1107.98 (18)N5—C19—H19118.8
C13—N3—Mn1110.59 (19)C20—C19—H19118.8
C24—N4—C30110.1 (3)C19—C20—C21119.8 (4)
C24—N4—C18110.1 (2)C19—C20—H20120.1
C30—N4—C18112.9 (2)C21—C20—H20120.1
C24—N4—Mn1108.93 (17)C20—C21—C22118.6 (4)
C30—N4—Mn1103.21 (19)C20—C21—H21120.7
C18—N4—Mn1111.38 (19)C22—C21—H21120.7
C23—N5—C19118.0 (3)C21—C22—C23119.2 (4)
C23—N5—Mn1117.7 (2)C21—C22—H22120.4
C19—N5—Mn1124.2 (2)C23—C22—H22120.4
C25—N6—C29117.7 (3)N5—C23—C22122.0 (3)
C25—N6—Mn1129.5 (2)N5—C23—C24118.3 (3)
C29—N6—Mn1112.7 (2)C22—C23—C24119.7 (3)
N1—C1—C2122.9 (4)N4—C24—C23114.5 (3)
N1—C1—H1118.5N4—C24—H24A108.6
C2—C1—H1118.5C23—C24—H24A108.6
C3—C2—C1118.9 (3)N4—C24—H24B108.6
C3—C2—H2120.6C23—C24—H24B108.6
C1—C2—H2120.6H24A—C24—H24B107.6
C2—C3—C4118.6 (3)N6—C25—C26123.1 (4)
C2—C3—H3120.7N6—C25—H25118.4
C4—C3—H3120.7C26—C25—H25118.4
C5—C4—C3120.4 (3)C27—C26—C25118.8 (4)
C5—C4—H4119.8C27—C26—H26120.6
C3—C4—H4119.8C25—C26—H26120.6
N1—C5—C4121.5 (3)C26—C27—C28118.7 (4)
N1—C5—C6116.9 (3)C26—C27—H27120.7
C4—C5—C6121.4 (3)C28—C27—H27120.7
N3—C6—C5112.7 (3)C27—C28—C29120.1 (4)
N3—C6—H6A109.0C27—C28—H28119.9
C5—C6—H6A109.0C29—C28—H28119.9
N3—C6—H6B109.0N6—C29—C28121.5 (3)
C5—C6—H6B109.0N6—C29—C30117.3 (3)
H6A—C6—H6B107.8C28—C29—C30121.2 (3)
N2—C7—C8123.6 (4)N4—C30—C29111.5 (3)
N2—C7—H7118.2N4—C30—H30A109.3
C8—C7—H7118.2C29—C30—H30A109.3
C7—C8—C9118.4 (4)N4—C30—H30B109.3
C7—C8—H8120.8C29—C30—H30B109.3
C9—C8—H8120.8H30A—C30—H30B108.0
C10—C9—C8118.7 (4)Cl1B—O1—Mn1162.9 (5)
C10—C9—H9120.7Cl1A—O1—Mn1143.4 (4)
C8—C9—H9120.7O4A—Cl1A—O3A114.4 (9)
C9—C10—C11119.5 (4)O4A—Cl1A—O2111.0 (6)
C9—C10—H10120.2O3A—Cl1A—O2109.7 (7)
C11—C10—H10120.2O4A—Cl1A—O1110.2 (5)
N2—C11—C10122.4 (3)O3A—Cl1A—O1104.7 (7)
N2—C11—C12117.0 (3)O2—Cl1A—O1106.4 (4)
C10—C11—C12120.6 (3)O3B—Cl1B—O4B115.7 (16)
N3—C12—C11109.8 (3)O3B—Cl1B—O1112.6 (11)
N3—C12—H12A109.7O4B—Cl1B—O1111.1 (11)
C11—C12—H12A109.7O3B—Cl1B—O2107.4 (13)
N3—C12—H12B109.7O4B—Cl1B—O2101.7 (13)
C11—C12—H12B109.7O1—Cl1B—O2107.4 (6)
H12A—C12—H12B108.2O7—Cl2—O5110.0 (3)
N3—C13—C18111.3 (2)O7—Cl2—O8109.4 (6)
N3—C13—C14114.1 (3)O5—Cl2—O8103.3 (4)
C18—C13—C14110.6 (3)O7—Cl2—O6117.0 (4)
N3—C13—H13106.8O5—Cl2—O6116.2 (3)
C18—C13—H13106.8O8—Cl2—O699.2 (3)
C14—C13—H13106.8
O1—Mn1—N1—C5135.9 (3)C7—C8—C9—C101.5 (7)
N4—Mn1—N1—C577.0 (3)C8—C9—C10—C110.9 (6)
N2—Mn1—N1—C557.0 (3)C7—N2—C11—C103.0 (5)
N6—Mn1—N1—C5146.1 (3)Mn1—N2—C11—C10171.1 (3)
N3—Mn1—N1—C59.0 (2)C7—N2—C11—C12175.9 (3)
O1—Mn1—N1—C147.9 (3)Mn1—N2—C11—C129.9 (4)
N4—Mn1—N1—C199.2 (3)C9—C10—C11—N21.4 (6)
N2—Mn1—N1—C1126.7 (3)C9—C10—C11—C12177.5 (4)
N6—Mn1—N1—C130.2 (3)C6—N3—C12—C1166.4 (3)
N3—Mn1—N1—C1167.3 (3)C13—N3—C12—C11170.8 (3)
N5—Mn1—N2—C11100.2 (2)Mn1—N3—C12—C1149.6 (3)
N1—Mn1—N2—C1180.2 (2)N2—C11—C12—N341.9 (4)
O1—Mn1—N2—C11169.0 (3)C10—C11—C12—N3139.1 (3)
N4—Mn1—N2—C1136.2 (3)C12—N3—C13—C1879.4 (3)
N6—Mn1—N2—C11177.3 (2)C6—N3—C13—C18158.6 (3)
N3—Mn1—N2—C1113.3 (2)Mn1—N3—C13—C1839.3 (3)
N5—Mn1—N2—C786.3 (3)C12—N3—C13—C1446.8 (4)
N1—Mn1—N2—C793.3 (3)C6—N3—C13—C1475.3 (3)
O1—Mn1—N2—C74.5 (3)Mn1—N3—C13—C14165.4 (2)
N4—Mn1—N2—C7150.3 (3)N3—C13—C14—C15177.1 (3)
N6—Mn1—N2—C79.2 (5)C18—C13—C14—C1556.4 (4)
N3—Mn1—N2—C7160.2 (3)C13—C14—C15—C1660.4 (4)
N5—Mn1—N3—C1243.0 (2)C14—C15—C16—C1761.0 (4)
N1—Mn1—N3—C12140.7 (2)C15—C16—C17—C1858.3 (4)
O1—Mn1—N3—C1273.4 (2)C24—N4—C18—C13159.6 (2)
N4—Mn1—N3—C12108.9 (2)C30—N4—C18—C1376.9 (3)
N2—Mn1—N3—C1233.11 (19)Mn1—N4—C18—C1338.6 (3)
N6—Mn1—N3—C12152.61 (19)C24—N4—C18—C1775.1 (3)
N5—Mn1—N3—C6159.5 (2)C30—N4—C18—C1748.3 (3)
N1—Mn1—N3—C624.1 (2)Mn1—N4—C18—C17163.9 (2)
O1—Mn1—N3—C643.2 (3)N3—C13—C18—N452.9 (3)
N4—Mn1—N3—C6134.6 (2)C14—C13—C18—N4179.0 (3)
N2—Mn1—N3—C683.5 (2)N3—C13—C18—C17179.2 (3)
N6—Mn1—N3—C690.8 (2)C14—C13—C18—C1752.7 (4)
N5—Mn1—N3—C1379.9 (2)C16—C17—C18—N4179.8 (3)
N1—Mn1—N3—C1396.5 (2)C16—C17—C18—C1354.1 (4)
O1—Mn1—N3—C13163.77 (18)C23—N5—C19—C202.1 (5)
N4—Mn1—N3—C1313.95 (18)Mn1—N5—C19—C20174.6 (3)
N2—Mn1—N3—C13155.9 (2)N5—C19—C20—C210.2 (6)
N6—Mn1—N3—C1329.8 (2)C19—C20—C21—C221.4 (7)
N5—Mn1—N4—C2417.8 (2)C20—C21—C22—C231.1 (7)
N1—Mn1—N4—C24158.9 (2)C19—N5—C23—C222.5 (5)
O1—Mn1—N4—C2447.9 (3)Mn1—N5—C23—C22174.5 (3)
N2—Mn1—N4—C2486.4 (2)C19—N5—C23—C24174.9 (3)
N6—Mn1—N4—C2478.2 (2)Mn1—N5—C23—C248.1 (4)
N3—Mn1—N4—C24134.6 (2)C21—C22—C23—N50.9 (6)
N5—Mn1—N4—C30134.8 (2)C21—C22—C23—C24176.4 (4)
N1—Mn1—N4—C3041.9 (2)C30—N4—C24—C23140.4 (3)
O1—Mn1—N4—C3069.1 (2)C18—N4—C24—C2394.5 (3)
N2—Mn1—N4—C30156.64 (18)Mn1—N4—C24—C2327.9 (3)
N6—Mn1—N4—C3038.81 (18)N5—C23—C24—N425.6 (4)
N3—Mn1—N4—C30108.42 (19)C22—C23—C24—N4157.0 (3)
N5—Mn1—N4—C18103.79 (19)C29—N6—C25—C260.2 (5)
N1—Mn1—N4—C1879.47 (19)Mn1—N6—C25—C26177.5 (3)
O1—Mn1—N4—C18169.45 (19)N6—C25—C26—C270.7 (6)
N2—Mn1—N4—C1835.2 (2)C25—C26—C27—C280.2 (6)
N6—Mn1—N4—C18160.2 (2)C26—C27—C28—C290.7 (6)
N3—Mn1—N4—C1812.99 (17)C25—N6—C29—C280.8 (5)
O1—Mn1—N5—C23142.3 (2)Mn1—N6—C29—C28178.9 (3)
N4—Mn1—N5—C235.7 (2)C25—N6—C29—C30179.8 (3)
N2—Mn1—N5—C23138.8 (2)Mn1—N6—C29—C302.2 (4)
N6—Mn1—N5—C2364.2 (2)C27—C28—C29—N61.3 (5)
N3—Mn1—N5—C2371.7 (3)C27—C28—C29—C30179.8 (3)
O1—Mn1—N5—C1940.9 (3)C24—N4—C30—C2963.3 (3)
N4—Mn1—N5—C19171.1 (3)C18—N4—C30—C29173.2 (3)
N2—Mn1—N5—C1938.0 (3)Mn1—N4—C30—C2952.8 (3)
N6—Mn1—N5—C19119.0 (3)N6—C29—C30—N436.1 (4)
N3—Mn1—N5—C19105.1 (3)C28—C29—C30—N4142.8 (3)
N5—Mn1—N6—C2585.9 (3)N5—Mn1—O1—Cl1B153 (2)
N1—Mn1—N6—C2595.3 (3)N1—Mn1—O1—Cl1B23 (2)
O1—Mn1—N6—C253.7 (3)N4—Mn1—O1—Cl1B91 (2)
N4—Mn1—N6—C25158.8 (3)N2—Mn1—O1—Cl1B123 (2)
N2—Mn1—N6—C2510.0 (5)N6—Mn1—O1—Cl1B62 (2)
N3—Mn1—N6—C25156.4 (3)N3—Mn1—O1—Cl1B85 (2)
N5—Mn1—N6—C2996.3 (2)N5—Mn1—O1—Cl1A167.8 (5)
N1—Mn1—N6—C2982.5 (2)N1—Mn1—O1—Cl1A16.2 (5)
O1—Mn1—N6—C29174.0 (2)N4—Mn1—O1—Cl1A131.1 (5)
N4—Mn1—N6—C2923.4 (2)N2—Mn1—O1—Cl1A83.6 (5)
N2—Mn1—N6—C29172.2 (2)N6—Mn1—O1—Cl1A101.9 (5)
N3—Mn1—N6—C2921.4 (3)N3—Mn1—O1—Cl1A45.1 (5)
C5—N1—C1—C21.0 (6)Cl1B—O2—Cl1A—O4A169.6 (13)
Mn1—N1—C1—C2175.3 (3)Cl1B—O2—Cl1A—O3A42.3 (12)
N1—C1—C2—C30.3 (7)Cl1B—O2—Cl1A—O170.5 (9)
C1—C2—C3—C41.0 (6)Cl1B—O1—Cl1A—O4A167.6 (15)
C2—C3—C4—C50.4 (6)Mn1—O1—Cl1A—O4A38.2 (9)
C1—N1—C5—C41.6 (5)Cl1B—O1—Cl1A—O3A44.2 (12)
Mn1—N1—C5—C4174.9 (2)Mn1—O1—Cl1A—O3A161.6 (7)
C1—N1—C5—C6174.8 (3)Cl1B—O1—Cl1A—O272.0 (12)
Mn1—N1—C5—C68.8 (4)Mn1—O1—Cl1A—O282.2 (8)
C3—C4—C5—N10.9 (5)Cl1A—O1—Cl1B—O3B169 (2)
C3—C4—C5—C6175.3 (3)Mn1—O1—Cl1B—O3B129 (3)
C12—N3—C6—C5151.6 (3)Cl1A—O1—Cl1B—O4B37.8 (14)
C13—N3—C6—C583.9 (3)Mn1—O1—Cl1B—O4B100 (2)
Mn1—N3—C6—C537.0 (3)Cl1A—O1—Cl1B—O272.6 (15)
N1—C5—C6—N332.3 (4)Mn1—O1—Cl1B—O211 (3)
C4—C5—C6—N3151.4 (3)Cl1A—O2—Cl1B—O3B164.7 (16)
C11—N2—C7—C82.4 (6)Cl1A—O2—Cl1B—O4B42.8 (14)
Mn1—N2—C7—C8171.0 (3)Cl1A—O2—Cl1B—O174.0 (11)
N2—C7—C8—C90.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.413.006 (5)122
C17—H17A···O2i0.972.483.413 (5)161
C18—H18···O8ii0.982.473.436 (6)170
C20—H20···O60.932.463.347 (6)159
C25—H25···O10.932.463.038 (5)121
C25—H25···O20.932.513.199 (5)131
C28—H28···O8iii0.932.483.243 (6)139
C30—H30A···O3Ai0.972.553.434 (11)152
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(ClO4)(C30H34N6)]ClO4
Mr732.47
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)14.223 (5), 14.121 (5), 16.504 (6)
β (°) 105.987 (6)
V3)3186.6 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.690, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
9661, 5412, 4446
Rint0.020
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 0.96
No. of reflections5412
No. of parameters452
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.30
Absolute structureFlack (1983), with 1804 Friedel pairs
Absolute structure parameter0.007 (16)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.413.006 (5)121.7
C17—H17A···O2i0.972.483.413 (5)161.3
C18—H18···O8ii0.982.473.436 (6)169.7
C20—H20···O60.932.463.347 (6)159.3
C25—H25···O10.932.463.038 (5)120.8
C25—H25···O20.932.513.199 (5)130.9
C28—H28···O8iii0.932.483.243 (6)139.3
C30—H30A···O3Ai0.972.553.434 (11)152.4
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-412-J02001).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHwang, I.-C. & Ha, K. (2006). Z. Kristallogr. New Cryst. Struct. 221, 468–470.  CAS Google Scholar
First citationMcCusker, J. K., Toftlund, H., Rheingold, A. L. & Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1797–1804.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToftlund, H. & Yde-Anderson, S. (1981). Acta Chem. Scand. A, 35, 575–585.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds