organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1790-o1791

(Z)-6-{2-[(E)-2,4-Di­hydroxy­benzyl­­idene­amino]phenyl­amino­methyl­ene}-3-hy­droxy­cyclo­hexa-2,4-dienone toluene solvate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bChemistry Department, University of Isfahan, Isfahan 81746-73441, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 7 August 2008; accepted 14 August 2008; online 20 August 2008)

The bis-Schiff base title compound, C20H16N2O4·C7H8, crystallized as a toluene solvate. In the solid state, it is present as its prototropic tautomer formed by transfer of one of the ortho-hydroxyl H atoms. The proton transfer is accompanied by a shift of electron pairs, as is evident from the observed C—O and C—N bond distances of 1.305 (2) and 1.315 (2) Å, which are largely consistent with C=O and C—N distances. The actual mol­ecule present in the solid state is thus the charge-neutral β-keto amine, with a small contribution of its zwitterionic valence tautomer via partial delocalization of electron pairs along the N—C—C—C—O atom chain. The dihedral angles between the central benzene ring and the two outer benzene rings of the Schiff base are 51.99 (8) and 12.95 (9)°. Intra­molecular O—H⋯N and N—H⋯O hydrogen bonds generate S(6) ring motifs, whereas intra­molecular N—H⋯N hydrogen bonds generate S(5) ring motifs. In the crystal structure, O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions link the mol­ecules into one-dimensional zigzag chains along the b axis; these chains are further stacked by O—H⋯O and weak C—H⋯O inter­actions along the c axis, forming two-dimensional extended networks parallel to the bc plane. In addition, the crystal structure is further stabilized by weak C—H⋯π and ππ inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see, for example: Cakir et al. (2002[Cakir, O., Elerman, Y. & Elmali, A. (2002). Anal. Sci., 18, 377-377.]); Eltayeb et al. (2007a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o3094-o3095.],b[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o3234-o3235.]); Karabiyik et al. (2007[Karabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215-o218.]); Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]); Fun, Mirkhani et al. (2008a[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374-o1375.],b[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471.]). For background on applications of Schiff base ligands, see, for example: Hajioudis et al. (1987[Hajioudis, E., Vitterakis, M. & Mustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1351.]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]); Eltayeb & Ahmed (2005a[Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech. 6, 51-59.],b[Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.]); Fakhari et al. (2005[Fakhari, A. R., Khorrami, A. R. & Naeimi, H. (2005). Talanta, 66, 813-817.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]). For related literature, see: Fun & Kia (2008[Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1657-o1658.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O4·C7H8

  • Mr = 440.48

  • Monoclinic, P 21 /c

  • a = 11.9753 (3) Å

  • b = 18.8539 (5) Å

  • c = 9.9240 (2) Å

  • β = 108.819 (1)°

  • V = 2120.87 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.25 × 0.13 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.994

  • 24830 measured reflections

  • 6233 independent reflections

  • 4023 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.163

  • S = 1.11

  • 6233 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected centroid⋯centroid distances (Å)

Cg1⋯Cg1i 3.7867 (1)
Cg2⋯Cg3ii 4.5626 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]. Cg1, Cg2, and Cg3 are the centroids of the C1–C6, C8–C13 and C15–C20 benzene rings, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.94 1.83 2.6568 (17) 145
O3—H1O3⋯O2i 0.96 1.64 2.5919 (18) 171
O4—H1O4⋯O3iii 0.90 1.87 2.7403 (16) 162
N2—H1N2⋯O2 0.88 1.84 2.5954 (18) 143
N2—H1N2⋯N1 0.88 2.37 2.7245 (19) 104
C16—H16A⋯O1iv 0.95 2.55 3.439 (2) 157
C17—H17A⋯O4v 0.95 2.51 3.381 (2) 152
C11—H11ACg4vi 0.95 2.97 3.619 (2) 126
Symmetry codes: (i) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y, -z+1; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg4 is the centroid of the C21–C26 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases have received much attention because of their potential applications with some of these compounds exhibiting various pharmacological activities, as noted by their anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) properties. Although numerous transition-metal complexes of Schiff bases have been structurally characterized (Granovski et al., 1993), relatively few free Schiff bases have been similarly characterized. N-substituted salicylaldimines show photochromism and thermochromism in the solid state. These effects are produced by intramolecular proton transfer associated with a change in the π-electron configuration (Hajioudis et al. 1987). In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b) such as nickel in some natural food products (Fakhari et al., 2005) or biologically important species (Shahrokhian et al., 2000). As part of a general study of tetradenate and bidentate Schiff bases (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008; Fun, Mirkhani et al., 2008a,b), we determined the structure of the title compound.

The title compound was synthesized from o-phenylenediamine by reaction with two equivalents of 2,4-dihydroxybenzaldehyde, and the expected reaction product would thus have been the bis-Schiff base 4-((E)-(2-((E)-2-hydroxybenzylideneamino)phenylimino)methyl) benzene-1,3-diol. The actual molecule obtained in the solid state is however its prototropic tautomer formed by transfer of one of the ortho-hydroxyl protons onto the adjacent imine unit. The proton transfer is accompanied by a shift of electron pairs as is evident from the observed C20–O2 and C14–N2 bond distances of 1.305 (2) and 1.315 (2) Å, which are consistent with CO and C—N distances (Allen et al., 1987), respectively. The formation of a CO keto group rather than a C-O- phenolate is also obvious by comparison with the other three phenol C-OH groups in the structure, which are about 0.05 Å longer than C20—O2. The actual molecule present in the solid state is thus the charge neutral β-keto amine (Z)-3-hydroxy-6-((2-((E)-2- hydroxybenzylideneamino)phenylamino)methylene)cyclohexa-2,4-dienone (top isomer in Fig. 4), with a small contribution of its zwitter-ionic valence tautomer via partial delocalization of electron pairs along the atom chain N2—C14—C15—C20—O2 (bottom tautomer in Fig. 4). The other imine group did not undergo proton transfer and is present in its original Shiff base state. Both the imine as well as the amine units are stabilized by strong O—H···N and N—H···O hydrogen bonds (Table 2) that generate S(6) ring motifs whereas the intramolecular N—H···N hydrogen bond between the amine and imine (Table 2) exhibits an S(5) ring motif (Bernstein et al., 1995). Bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Eltayeb et al., 2007a,b; Cakir et al. 2002; Karabiyik et al., 2007). The C8–C13 phenyl ring makes a dihedral angle of 51.99 (8)° with the dihydroxyphenyl ring (C1–C6/O1/O3) and 12.95 (9)° with the keto-hydroxyphenyl ring (C15–C20/O2/O4). In the crystal packing (Fig. 2), additional O—H···O hydrogen bonds and weak C—H···O interactions (Table 2) link the molecules into one dimensional zigzag extended chains along the b axis and these chains are further stacked (Fig. 2 & 3) along the c axis thus forming two-dimensional extended networks parallel to the bc plane. The crystal is further stabilized by weak C—H···π interactions (Table 2). The short distance between the centroids of the six-membered rings prove an existence of π···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see, for example: Cakir et al. (2002); Eltayeb et al. (2007a,b); Karabiyik et al. (2007); Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008); Fun, Mirkhani et al. (2008a,b). For background on applications of Schiff base ligands, see, for example: Hajioudis et al. (1987); Granovski et al. (1993); Dao et al. (2000); Shahrokhian et al. (2000); Eltayeb & Ahmed (2005a,b); Fakhari et al. (2005); Karthikeyan et al. (2006); Sriram et al. (2006). For related literature, see: Fun & Kia (2008).

Experimental top

The title compound was synthesized by adding 2,4-dihydroxybenzaldehyde (0.552 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from a mixture of THF/toluene (2/1) by slow evaporation of the solvents at room temperature over several days.

Refinement top

Hydroxyl and amine/imine H atoms were located from the difference Fourier map and refined as riding on the parent atoms with isotropic refinement of the displacement parameters. The remaining H atoms were geometrically located and refined as riding model. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c axis, showing the molecular chains along the b axis and stacking of these chains along the c-axis. Hydrogen bonds are drawn as dashed lines. The toluene molecules were omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of (I), showing 1-D extended chains along the c axis. The toluene molecules were omitted for clarity.
[Figure 4] Fig. 4. The charge neutral β-keto amine (main component) form and the valence tautomer via partial delocalization of electron pairs along the N—C—C—C—O atom chain (small contribution) in the title compound.
(Z)-6-{2-[(E)-2,4-Dihydroxybenzylideneamino]phenylaminomethylene}- 3-hydroxycyclohexa-2,4-dienone toluene solvate top
Crystal data top
C20H16N2O4·C7H8F(000) = 928
Mr = 440.48Dx = 1.380 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5653 reflections
a = 11.9753 (3) Åθ = 2.4–29.6°
b = 18.8539 (5) ŵ = 0.09 mm1
c = 9.9240 (2) ÅT = 100 K
β = 108.819 (1)°Plate, yellow
V = 2120.87 (9) Å30.25 × 0.13 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6233 independent reflections
Radiation source: fine-focus sealed tube4023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 30.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1416
Tmin = 0.954, Tmax = 0.994k = 2026
24830 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.4015P]
where P = (Fo2 + 2Fc2)/3
6233 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C20H16N2O4·C7H8V = 2120.87 (9) Å3
Mr = 440.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9753 (3) ŵ = 0.09 mm1
b = 18.8539 (5) ÅT = 100 K
c = 9.9240 (2) Å0.25 × 0.13 × 0.02 mm
β = 108.819 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6233 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4023 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.994Rint = 0.039
24830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.11Δρmax = 0.76 e Å3
6233 reflectionsΔρmin = 0.32 e Å3
299 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18268 (12)0.42566 (7)0.14400 (14)0.0168 (3)
O30.50774 (11)0.63459 (6)0.61784 (12)0.0214 (3)
H1O30.57240.66080.60440.032*
O10.23309 (11)0.45373 (6)0.41957 (12)0.0225 (3)
H1O10.20530.42700.33490.034*
O40.48126 (11)0.07727 (6)0.62444 (12)0.0217 (3)
H1O40.49990.09950.70960.033*
O20.31282 (10)0.29118 (6)0.39178 (12)0.0187 (3)
N20.17826 (12)0.28136 (7)0.12862 (14)0.0170 (3)
H1N20.21520.30430.20790.025*
C80.11363 (14)0.39346 (9)0.01527 (17)0.0165 (3)
C60.31241 (14)0.51993 (9)0.26313 (17)0.0161 (3)
C150.27803 (14)0.18211 (9)0.26242 (17)0.0165 (3)
C130.10818 (14)0.31889 (9)0.00863 (17)0.0164 (3)
C160.30131 (15)0.10819 (9)0.26262 (18)0.0194 (4)
H16A0.26840.08180.17750.023*
C70.24537 (14)0.48061 (9)0.13868 (17)0.0165 (3)
H7A0.24750.49590.04830.020*
C90.04597 (15)0.43207 (9)0.10182 (17)0.0193 (4)
H9A0.04870.48240.09880.023*
C190.39752 (15)0.18616 (9)0.51268 (17)0.0177 (3)
H19A0.43050.21130.59940.021*
C50.38949 (15)0.57342 (8)0.25065 (17)0.0176 (4)
H5A0.39610.58340.15970.021*
C10.30495 (14)0.50578 (8)0.39969 (17)0.0163 (3)
C170.36973 (15)0.07431 (9)0.38208 (18)0.0198 (4)
H17A0.38530.02500.38040.024*
C180.41709 (15)0.11407 (9)0.50847 (17)0.0176 (3)
C20.36978 (14)0.54490 (9)0.51645 (17)0.0175 (4)
H2A0.36270.53580.60750.021*
C120.03656 (15)0.28533 (9)0.11326 (17)0.0204 (4)
H12A0.03330.23500.11730.024*
C200.32949 (14)0.22283 (9)0.39033 (17)0.0164 (3)
C40.45602 (15)0.61205 (9)0.36648 (17)0.0185 (4)
H4A0.50830.64790.35590.022*
C140.20597 (15)0.21362 (9)0.13726 (17)0.0176 (4)
H14A0.17560.18490.05480.021*
C100.02551 (15)0.39818 (10)0.22315 (18)0.0225 (4)
H10A0.07140.42530.30240.027*
C30.44526 (14)0.59760 (9)0.49988 (17)0.0168 (3)
C110.02984 (15)0.32460 (10)0.22838 (18)0.0231 (4)
H11A0.07860.30130.31140.028*
C230.30310 (18)0.71109 (11)0.7808 (2)0.0329 (5)
H23A0.35830.73840.75230.040*
C250.2145 (2)0.67854 (11)0.9559 (2)0.0352 (5)
H25A0.20930.68301.04900.042*
C260.13983 (19)0.63297 (10)0.8595 (2)0.0314 (5)
H26A0.08220.60730.88670.038*
C220.22868 (18)0.66449 (10)0.6864 (2)0.0293 (4)
H22A0.23390.66040.59320.035*
C210.14696 (17)0.62366 (10)0.7224 (2)0.0292 (4)
C240.29687 (18)0.71778 (11)0.9173 (2)0.0350 (5)
H24A0.34870.74900.98370.042*
C270.0688 (2)0.57353 (12)0.6196 (2)0.0402 (5)
H27A0.11660.53650.59540.060*
H27B0.02420.59920.53310.060*
H27C0.01390.55170.66220.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0194 (7)0.0153 (7)0.0144 (7)0.0009 (6)0.0036 (6)0.0015 (5)
O30.0251 (7)0.0191 (6)0.0189 (6)0.0058 (5)0.0056 (5)0.0025 (5)
O10.0294 (7)0.0215 (7)0.0167 (6)0.0103 (5)0.0076 (5)0.0025 (5)
O40.0273 (7)0.0183 (6)0.0174 (6)0.0051 (5)0.0043 (5)0.0029 (5)
O20.0224 (6)0.0131 (6)0.0187 (6)0.0011 (5)0.0039 (5)0.0009 (5)
N20.0183 (7)0.0169 (7)0.0137 (7)0.0029 (6)0.0025 (6)0.0007 (5)
C80.0163 (8)0.0201 (9)0.0131 (8)0.0010 (7)0.0048 (6)0.0024 (6)
C60.0180 (8)0.0144 (8)0.0150 (8)0.0017 (6)0.0040 (6)0.0004 (6)
C150.0189 (8)0.0162 (8)0.0163 (8)0.0011 (7)0.0082 (7)0.0006 (6)
C130.0152 (8)0.0170 (8)0.0172 (8)0.0002 (6)0.0053 (7)0.0015 (6)
C160.0261 (9)0.0173 (9)0.0168 (8)0.0008 (7)0.0099 (7)0.0025 (7)
C70.0188 (8)0.0165 (8)0.0139 (8)0.0033 (7)0.0047 (7)0.0005 (6)
C90.0218 (9)0.0181 (9)0.0169 (8)0.0033 (7)0.0047 (7)0.0013 (7)
C190.0196 (8)0.0176 (9)0.0151 (8)0.0014 (7)0.0044 (7)0.0009 (6)
C50.0212 (9)0.0157 (8)0.0168 (8)0.0027 (7)0.0073 (7)0.0031 (6)
C10.0180 (8)0.0133 (8)0.0174 (8)0.0012 (6)0.0055 (7)0.0008 (6)
C170.0259 (9)0.0148 (8)0.0214 (9)0.0022 (7)0.0115 (7)0.0005 (7)
C180.0179 (8)0.0186 (9)0.0177 (8)0.0022 (7)0.0077 (7)0.0034 (7)
C20.0206 (9)0.0162 (8)0.0156 (8)0.0005 (7)0.0059 (7)0.0002 (6)
C120.0195 (9)0.0194 (9)0.0205 (9)0.0045 (7)0.0041 (7)0.0035 (7)
C200.0163 (8)0.0161 (8)0.0182 (8)0.0010 (6)0.0074 (7)0.0003 (6)
C40.0202 (9)0.0143 (8)0.0207 (9)0.0003 (7)0.0062 (7)0.0011 (7)
C140.0214 (9)0.0156 (8)0.0167 (8)0.0025 (7)0.0074 (7)0.0007 (6)
C100.0197 (9)0.0285 (10)0.0159 (8)0.0037 (7)0.0012 (7)0.0014 (7)
C30.0179 (8)0.0142 (8)0.0164 (8)0.0008 (6)0.0028 (7)0.0034 (6)
C110.0197 (9)0.0291 (10)0.0168 (9)0.0014 (8)0.0009 (7)0.0037 (7)
C230.0296 (11)0.0343 (12)0.0362 (12)0.0008 (9)0.0124 (9)0.0017 (9)
C250.0458 (13)0.0309 (11)0.0313 (11)0.0098 (10)0.0158 (10)0.0044 (9)
C260.0341 (11)0.0258 (11)0.0402 (12)0.0053 (9)0.0201 (10)0.0106 (9)
C220.0307 (11)0.0280 (10)0.0316 (11)0.0033 (9)0.0134 (9)0.0029 (8)
C210.0292 (10)0.0275 (10)0.0311 (11)0.0057 (8)0.0101 (9)0.0055 (8)
C240.0330 (11)0.0363 (12)0.0336 (11)0.0063 (9)0.0076 (9)0.0001 (9)
C270.0429 (13)0.0380 (13)0.0415 (13)0.0042 (10)0.0161 (11)0.0008 (10)
Geometric parameters (Å, º) top
N1—C71.290 (2)C5—H5A0.9500
N1—C81.415 (2)C1—C21.382 (2)
O3—C31.3608 (19)C17—C181.413 (2)
O3—H1O30.9628C17—H17A0.9500
O1—C11.3608 (19)C2—C31.388 (2)
O1—H1O10.9431C2—H2A0.9500
O4—C181.3513 (19)C12—C111.378 (2)
O4—H1O40.9048C12—H12A0.9500
O2—C201.3048 (19)C4—C31.398 (2)
N2—C141.315 (2)C4—H4A0.9500
N2—C131.406 (2)C14—H14A0.9500
N2—H1N20.8816C10—C111.389 (3)
C8—C91.389 (2)C10—H10A0.9500
C8—C131.408 (2)C11—H11A0.9500
C6—C51.399 (2)C23—C221.380 (3)
C6—C11.412 (2)C23—C241.387 (3)
C6—C71.442 (2)C23—H23A0.9500
C15—C141.396 (2)C25—C261.379 (3)
C15—C161.421 (2)C25—C241.382 (3)
C15—C201.441 (2)C25—H25A0.9500
C13—C121.389 (2)C26—C211.402 (3)
C16—C171.363 (2)C26—H26A0.9500
C16—H16A0.9500C22—C211.380 (3)
C7—H7A0.9500C22—H22A0.9500
C9—C101.388 (2)C21—C271.482 (3)
C9—H9A0.9500C24—H24A0.9500
C19—C181.382 (2)C27—H27A0.9800
C19—C201.406 (2)C27—H27B0.9800
C19—H19A0.9500C27—H27C0.9800
C5—C41.377 (2)
Cg1···Cg1i3.7867 (1)Cg2···Cg3ii4.5626 (3)
C7—N1—C8119.05 (14)C11—C12—C13120.40 (16)
C3—O3—H1O3112.8C11—C12—H12A119.8
C1—O1—H1O1108.3C13—C12—H12A119.8
C18—O4—H1O4117.3O2—C20—C19121.60 (15)
C14—N2—C13127.78 (14)O2—C20—C15120.84 (15)
C14—N2—H1N2112.0C19—C20—C15117.56 (15)
C13—N2—H1N2120.0C5—C4—C3118.85 (15)
C9—C8—C13118.59 (15)C5—C4—H4A120.6
C9—C8—N1122.94 (15)C3—C4—H4A120.6
C13—C8—N1118.38 (14)N2—C14—C15122.80 (15)
C5—C6—C1117.97 (15)N2—C14—H14A118.6
C5—C6—C7119.71 (14)C15—C14—H14A118.6
C1—C6—C7122.32 (15)C9—C10—C11119.84 (16)
C14—C15—C16118.90 (15)C9—C10—H10A120.1
C14—C15—C20121.53 (15)C11—C10—H10A120.1
C16—C15—C20119.57 (15)O3—C3—C2117.60 (14)
C12—C13—N2122.70 (15)O3—C3—C4121.45 (15)
C12—C13—C8120.12 (15)C2—C3—C4120.95 (15)
N2—C13—C8117.18 (14)C12—C11—C10120.08 (16)
C17—C16—C15121.56 (15)C12—C11—H11A120.0
C17—C16—H16A119.2C10—C11—H11A120.0
C15—C16—H16A119.2C22—C23—C24119.6 (2)
N1—C7—C6123.24 (15)C22—C23—H23A120.2
N1—C7—H7A118.4C24—C23—H23A120.2
C6—C7—H7A118.4C26—C25—C24120.16 (19)
C10—C9—C8120.97 (16)C26—C25—H25A119.9
C10—C9—H9A119.5C24—C25—H25A119.9
C8—C9—H9A119.5C25—C26—C21121.50 (19)
C18—C19—C20120.93 (15)C25—C26—H26A119.3
C18—C19—H19A119.5C21—C26—H26A119.3
C20—C19—H19A119.5C21—C22—C23122.41 (19)
C4—C5—C6121.86 (15)C21—C22—H22A118.8
C4—C5—H5A119.1C23—C22—H22A118.8
C6—C5—H5A119.1C22—C21—C26116.88 (19)
O1—C1—C2118.28 (14)C22—C21—C27121.39 (18)
O1—C1—C6120.95 (14)C26—C21—C27121.72 (19)
C2—C1—C6120.77 (15)C25—C24—C23119.4 (2)
C16—C17—C18118.67 (16)C25—C24—H24A120.3
C16—C17—H17A120.7C23—C24—H24A120.3
C18—C17—H17A120.7C21—C27—H27A109.5
O4—C18—C19122.31 (15)C21—C27—H27B109.5
O4—C18—C17116.02 (15)H27A—C27—H27B109.5
C19—C18—C17121.66 (15)C21—C27—H27C109.5
C1—C2—C3119.59 (15)H27A—C27—H27C109.5
C1—C2—H2A120.2H27B—C27—H27C109.5
C3—C2—H2A120.2
C7—N1—C8—C943.9 (2)N2—C13—C12—C11179.57 (15)
C7—N1—C8—C13139.83 (16)C8—C13—C12—C110.2 (2)
C14—N2—C13—C1214.2 (3)C18—C19—C20—O2178.20 (15)
C14—N2—C13—C8165.19 (16)C18—C19—C20—C152.0 (2)
C9—C8—C13—C120.2 (2)C14—C15—C20—O22.0 (2)
N1—C8—C13—C12176.67 (14)C16—C15—C20—O2177.67 (15)
C9—C8—C13—N2179.64 (14)C14—C15—C20—C19177.82 (15)
N1—C8—C13—N23.9 (2)C16—C15—C20—C192.5 (2)
C14—C15—C16—C17179.13 (15)C6—C5—C4—C30.5 (2)
C20—C15—C16—C171.2 (2)C13—N2—C14—C15179.10 (15)
C8—N1—C7—C6175.76 (15)C16—C15—C14—N2178.73 (15)
C5—C6—C7—N1172.13 (15)C20—C15—C14—N21.6 (2)
C1—C6—C7—N16.8 (3)C8—C9—C10—C110.1 (3)
C13—C8—C9—C100.1 (2)C1—C2—C3—O3179.73 (14)
N1—C8—C9—C10176.39 (15)C1—C2—C3—C40.5 (2)
C1—C6—C5—C40.5 (2)C5—C4—C3—O3179.24 (15)
C7—C6—C5—C4179.50 (15)C5—C4—C3—C20.5 (2)
C5—C6—C1—O1178.99 (14)C13—C12—C11—C100.0 (3)
C7—C6—C1—O10.0 (2)C9—C10—C11—C120.1 (3)
C5—C6—C1—C21.6 (2)C24—C25—C26—C211.7 (3)
C7—C6—C1—C2179.48 (15)C24—C23—C22—C210.1 (3)
C15—C16—C17—C180.7 (2)C23—C22—C21—C261.9 (3)
C20—C19—C18—O4179.47 (15)C23—C22—C21—C27179.43 (19)
C20—C19—C18—C170.1 (2)C25—C26—C21—C222.7 (3)
C16—C17—C18—O4178.10 (14)C25—C26—C21—C27178.57 (19)
C16—C17—C18—C191.3 (2)C26—C25—C24—C230.4 (3)
O1—C1—C2—C3178.99 (15)C22—C23—C24—C251.2 (3)
C6—C1—C2—C31.6 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.941.832.6568 (17)145
O3—H1O3···O2i0.961.642.5919 (18)171
O4—H1O4···O3iii0.901.872.7403 (16)162
N2—H1N2···O20.881.842.5954 (18)143
N2—H1N2···N10.882.372.7245 (19)104
C16—H16A···O1iv0.952.553.439 (2)157
C17—H17A···O4v0.952.513.381 (2)152
C11—H11A···Cg4vi0.952.973.619 (2)126
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x, y+1/2, z1/2; (v) x+1, y, z+1; (vi) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16N2O4·C7H8
Mr440.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.9753 (3), 18.8539 (5), 9.9240 (2)
β (°) 108.819 (1)
V3)2120.87 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.13 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.954, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
24830, 6233, 4023
Rint0.039
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.163, 1.11
No. of reflections6233
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.32

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected interatomic distances (Å) top
Cg1···Cg1i3.7867 (1)Cg2···Cg3ii4.5626 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.94001.83002.6568 (17)145.00
O3—H1O3···O2i0.96001.64002.5919 (18)171.00
O4—H1O4···O3iii0.90001.87002.7403 (16)162.00
N2—H1N2···O20.88001.84002.5954 (18)143.00
N2—H1N2···N10.88002.37002.7245 (19)104.00
C16—H16A···O1iv0.95002.55003.439 (2)157.00
C17—H17A···O4v0.95002.51003.381 (2)152.00
C11—H11A···Cg4vi0.95002.97003.619 (2)126.00
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y1/2, z+3/2; (iv) x, y+1/2, z1/2; (v) x+1, y, z+1; (vi) x, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: zsrkk@yahoo.com.

§Additional correspondence author, e-mail: mirkhani@sci.ui.ac.ir.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. VM and HZ thank the University of Isfahan for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCakir, O., Elerman, Y. & Elmali, A. (2002). Anal. Sci., 18, 377–377.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech. 6, 51–59.  Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97–108.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o3094–o3095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o3234–o3235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFakhari, A. R., Khorrami, A. R. & Naeimi, H. (2005). Talanta, 66, 813–817.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1657–o1658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008a). Acta Cryst. E64, o1374–o1375.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008b). Acta Cryst. E64, o1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationHajioudis, E., Vitterakis, M. & Mustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1351.  Google Scholar
First citationKarabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215–o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1790-o1791
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds