organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,7-Di­chloro­quinoline-8-carboxylic acid

aHuaiyin Teachers College, 111 West Changjiang Road, Huaian 223300, Jiangsu, People's Republic of China
*Correspondence e-mail: xinhong_guo@hotmail.com

(Received 11 August 2008; accepted 14 August 2008; online 20 August 2008)

The title compound (trade name: quinclorac), C10H5Cl2NO2, was crystallized from a dimethyl sulfoxide solution. Quinclorac mol­ecules are packed mainly via ππ stacking inter­actions between neighbouring heterocycles (interplanar distance: 3.31 Å) and via O—H⋯N hydrogen bonding.

Related literature

For the use of 3,7-dichloro­quinoline-8-carboxylic acid as a herbicide, see: Nuria et al. (1997[Nuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci. 51, 171-175.]); Pornprom et al. (2006[Pornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci. 62, 1109-1115.]); Sunohara & Matsumoto (2004[Sunohara, Y. & Matsumoto, H. (2004). Plant Sci. 167, 597-606.]); Tresch & Grossmann (2002[Tresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol. 75, 73-78.]). For related complexes, see: Li et al. (2008[Li, Z., Wu, F., Gong, Y., Zhang, Y. & Bai, C. (2008). Acta Cryst. E64, m227.]); Turel et al. (2004[Turel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239-401.]); Zhang et al. (2007[Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5Cl2NO2

  • Mr = 242.05

  • Triclinic, [P \overline 1]

  • a = 7.5002 (12) Å

  • b = 8.4016 (14) Å

  • c = 8.732 (3) Å

  • α = 102.529 (6)°

  • β = 93.439 (6)°

  • γ = 116.479 (4)°

  • V = 472.98 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 173 (2) K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.84, Tmax = 0.88

  • 5948 measured reflections

  • 1834 independent reflections

  • 1102 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.140

  • S = 1.01

  • 1834 reflections

  • 139 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.84 (5) 1.91 (5) 2.753 (4) 173 (4)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Quinclorac (3,7-dichloroquinoline-8-carboxylic acid) is one of the most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002), and is widely used in agriculture. In addition, as a quinolinecarboxylate derivate, quinclorac could chelate metal ions, forming corresponding complexes (Li et al., 2008; Turel et al., 2004; Zhang et al., 2007). As an extension of these studies, we report herein on the structure of quinclorac.

A quinclorac molecule, which is the asymmetric unit of the structure, is shown in Fig. 1. All the bond distances and bond angles of quinclorac are normal and call for no further comment. Two types of intermolecular interations are easily found in the structure of quinclorac (Fig. 2). There exists a π-π interaction between adjacent quinin cycles with an inversion center located halfway between the aromatic rings, thus forming stacks along the a direction. Quinclorac molecules of adjacent chains are joined through H-bonding of O1—H1···N1i (symmetry code: (i) 1 - x, 2 - y, 1 - z) (Table 1) into a triclinic supramolecular architecture (Fig. 2).

Related literature top

For the use of 3,7-dichloroquinoline-8-carboxylic acid as a herbicide, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002). For related complexes, see: Li et al. (2008); Turel et al. (2004); Zhang et al. (2007).

Experimental top

Quinclorac was obtained from a commercial source and used directly without further purification. Quinclorac (0.5 mmol, 0.121 g) was dissolved in 10 mL DMSO. After ether vapor slowly diffused into the solution at room temperature for several days, colorless prismlike crystals suitable for crystallographic research were obtained.

Refinement top

All the non-hydrogen atoms were located from the Fourier maps, and were refined anisotropically. The hydroxyl hydrogen, H1A, was found from the Fourier difference maps and refined isotropically with a fixed O—H bond length. All other H atoms were positioned geometrically. All isotropic vibration parameters of hydrogen atoms were related to the atoms which they are bonded to with Uiso(H) = 1.2 Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of quinclorac with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram of quinclorac showing the π-π stacks along the a direction. Intermolecular H-bonding is indicated via dashed lines.
3,7-Dichloroquinoline-8-carboxylic acid top
Crystal data top
C10H5Cl2NO2Z = 2
Mr = 242.05F(000) = 244
Triclinic, P1Dx = 1.700 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5002 (12) ÅCell parameters from 958 reflections
b = 8.4016 (14) Åθ = 2.1–25.5°
c = 8.732 (3) ŵ = 0.66 mm1
α = 102.529 (6)°T = 173 K
β = 93.439 (6)°Prismlike, colorless
γ = 116.479 (4)°0.26 × 0.22 × 0.20 mm
V = 472.98 (17) Å3
Data collection top
Bruker SMART APEXII
diffractometer
1834 independent reflections
Radiation source: fine-focus sealed tube1102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 99
Tmin = 0.84, Tmax = 0.88k = 810
5948 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.062P)2]
where P = (Fo2 + 2Fc2)/3
1834 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C10H5Cl2NO2γ = 116.479 (4)°
Mr = 242.05V = 472.98 (17) Å3
Triclinic, P1Z = 2
a = 7.5002 (12) ÅMo Kα radiation
b = 8.4016 (14) ŵ = 0.66 mm1
c = 8.732 (3) ÅT = 173 K
α = 102.529 (6)°0.26 × 0.22 × 0.20 mm
β = 93.439 (6)°
Data collection top
Bruker SMART APEXII
diffractometer
1834 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1102 reflections with I > 2σ(I)
Tmin = 0.84, Tmax = 0.88Rint = 0.067
5948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.30 e Å3
1834 reflectionsΔρmin = 0.43 e Å3
139 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3476 (6)0.5471 (6)0.2465 (5)0.0354 (10)
H10.38610.59570.15830.043*
C20.2932 (6)0.3616 (6)0.2276 (5)0.0324 (9)
C30.2343 (6)0.2876 (6)0.3515 (5)0.0337 (10)
H30.19630.16130.34130.040*
C40.1686 (6)0.3342 (6)0.6269 (5)0.0369 (10)
H40.12860.20860.62200.044*
C50.1655 (7)0.4475 (6)0.7605 (5)0.0363 (10)
H50.12150.40110.84890.044*
C60.2272 (6)0.6342 (6)0.7699 (5)0.0308 (9)
C70.2918 (6)0.7078 (5)0.6455 (5)0.0253 (8)
C80.2910 (5)0.5882 (5)0.5036 (5)0.0261 (8)
C90.2304 (6)0.4002 (5)0.4943 (5)0.0261 (8)
C100.3645 (6)0.9105 (5)0.6610 (4)0.0293 (9)
Cl10.29545 (15)0.22889 (15)0.04666 (12)0.0385 (3)
Cl20.23077 (17)0.77619 (16)0.94953 (12)0.0422 (3)
N10.3496 (5)0.6591 (4)0.3774 (4)0.0283 (7)
O10.5586 (4)0.9997 (4)0.6659 (3)0.0302 (6)
H1A0.597 (7)1.106 (7)0.652 (5)0.036*
O20.2510 (5)0.9766 (4)0.6634 (5)0.0519 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (2)0.041 (3)0.032 (2)0.021 (2)0.0079 (18)0.012 (2)
C20.027 (2)0.032 (2)0.039 (2)0.0174 (19)0.0036 (17)0.0030 (19)
C30.033 (2)0.021 (2)0.049 (2)0.016 (2)0.0051 (19)0.008 (2)
C40.037 (2)0.025 (2)0.053 (3)0.014 (2)0.006 (2)0.022 (2)
C50.043 (2)0.035 (3)0.036 (2)0.019 (2)0.0106 (19)0.017 (2)
C60.0262 (19)0.035 (2)0.033 (2)0.0165 (18)0.0041 (16)0.0098 (19)
C70.028 (2)0.020 (2)0.032 (2)0.0138 (17)0.0062 (16)0.0073 (17)
C80.0180 (18)0.024 (2)0.034 (2)0.0095 (16)0.0014 (15)0.0050 (17)
C90.0258 (18)0.020 (2)0.036 (2)0.0126 (16)0.0030 (16)0.0091 (17)
C100.034 (2)0.025 (2)0.0246 (19)0.0119 (18)0.0010 (15)0.0038 (18)
Cl10.0372 (6)0.0432 (7)0.0423 (6)0.0303 (5)0.0101 (5)0.0006 (5)
Cl20.0548 (7)0.0433 (7)0.0343 (6)0.0280 (6)0.0144 (5)0.0089 (5)
N10.0318 (18)0.0235 (18)0.0295 (17)0.0130 (15)0.0066 (13)0.0069 (15)
O10.0319 (16)0.0189 (15)0.0364 (16)0.0071 (13)0.0056 (12)0.0120 (13)
O20.048 (2)0.0257 (17)0.092 (3)0.0240 (16)0.0204 (18)0.0171 (18)
Geometric parameters (Å, º) top
C1—N11.308 (5)C5—H50.9500
C1—C21.391 (6)C6—C71.373 (6)
C1—H10.9500C6—Cl21.743 (4)
C2—C31.362 (6)C7—C81.414 (5)
C2—Cl11.731 (4)C7—C101.510 (5)
C3—C91.403 (6)C8—N11.369 (5)
C3—H30.9500C8—C91.417 (5)
C4—C51.345 (6)C10—O21.206 (5)
C4—C91.405 (5)C10—O11.299 (5)
C4—H40.9500O1—H1A0.84 (5)
C5—C61.405 (6)
N1—C1—C2124.6 (4)C7—C6—Cl2119.9 (3)
N1—C1—H1117.7C5—C6—Cl2118.0 (3)
C2—C1—H1117.7C6—C7—C8117.8 (4)
C3—C2—C1118.9 (4)C6—C7—C10121.0 (3)
C3—C2—Cl1121.5 (3)C8—C7—C10121.2 (3)
C1—C2—Cl1119.6 (3)N1—C8—C7118.2 (4)
C2—C3—C9119.2 (4)N1—C8—C9121.6 (3)
C2—C3—H3120.4C7—C8—C9120.2 (4)
C9—C3—H3120.4C3—C9—C4122.9 (4)
C5—C4—C9120.5 (4)C3—C9—C8118.0 (4)
C5—C4—H4119.7C4—C9—C8119.1 (3)
C9—C4—H4119.7O2—C10—O1125.4 (4)
C4—C5—C6120.2 (4)O2—C10—C7122.5 (3)
C4—C5—H5119.9O1—C10—C7112.1 (3)
C6—C5—H5119.9C1—N1—C8117.7 (3)
C7—C6—C5122.1 (4)C10—O1—H1A113 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.84 (5)1.91 (5)2.753 (4)173 (4)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC10H5Cl2NO2
Mr242.05
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.5002 (12), 8.4016 (14), 8.732 (3)
α, β, γ (°)102.529 (6), 93.439 (6), 116.479 (4)
V3)472.98 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.84, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
5948, 1834, 1102
Rint0.067
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.140, 1.01
No. of reflections1834
No. of parameters139
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.43

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.84 (5)1.91 (5)2.753 (4)173 (4)
Symmetry code: (i) x+1, y+2, z+1.
 

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, Z., Wu, F., Gong, Y., Zhang, Y. & Bai, C. (2008). Acta Cryst. E64, m227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNuria, L. M., George, M. & Rafael, D. P. (1997). Pestic. Sci. 51, 171–175.  CrossRef Google Scholar
First citationPornprom, T., Mahatamuchoke, P. & Usui, K. (2006). Pest Manag. Sci. 62, 1109–1115.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunohara, Y. & Matsumoto, H. (2004). Plant Sci. 167, 597–606.  Web of Science CrossRef CAS Google Scholar
First citationTresch, S. & Grossmann, K. (2002). Pestic. Biochem. Physiol. 75, 73–78.  Web of Science CrossRef Google Scholar
First citationTurel, I., Milena, P., Amalija, G., Enzo, A., Barbara, S., Alberta, B. & Gianni, S. (2004). Inorg. Chim. Acta, 98, 239–401.  Google Scholar
First citationZhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds