organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(5-Methyl-2-fur­yl)-1-(p-tol­yl)-2-propen-1-one

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bDepartment of Equipment, Weifang University, Weifang 261061, People's Republic of China, and cMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 15 August 2008; accepted 11 September 2008; online 17 September 2008)

The title compound, C15H14O2, was prepared from 4-methyl­hypnone and 5-methyl­furfural by Clasion–Schmidt condensation. All of the bond lengths and bond angles are in normal ranges. The dihedral angle formed by the benzene ring and furan ring is 5.31 (2).

Related literature

For the biological activity of chalcones, see: Hsieh et al. (1998[Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]); Anto et al. (1994[Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73-80.]). For the effectiveness of chalcones against cancer, see: De Vincenzo et al. (2000[De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305-312.]); Dimmock et al. (1998[Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014-1026.]). For bond-length and angle data, see: Ali et al. (2005[Ali, H. M., Puvaneswary, S., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o1079-o1080.]); Zhou (2007[Zhou, L.-Y. (2007). Acta Cryst. E63, o3113.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14O2

  • Mr = 226.26

  • Monoclinic, P 21 /c

  • a = 8.0394 (8) Å

  • b = 17.0278 (17) Å

  • c = 10.6550 (8) Å

  • β = 121.347 (6)°

  • V = 1245.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 7980 measured reflections

  • 2985 independent reflections

  • 1706 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.136

  • S = 1.02

  • 2985 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among flavonoids, chalcones have been identified as interesting compounds having multiple biological actions which include antiinflammatory (Hsieh et al.,1998) and antioxidant (Anto et al., 1994). Of particular interest, the effectiveness of chalcones against cancer has been investigated (De Vincenzo et al., 2000; Dimmock et al., 1998). As part of our search for new biologically active compounds we synthesized the title compound (I), and describe its structure here.

In the structure of (I) (Fig. 1), all of the bond lengths and bond angles fall in the normal range (Zhou, 2007; Ali et al., 2005). The dihedral angles formed by the benzene ring and furan ring is 5.31 (2)°. There are some weak C—H···O hydrogen bonds in the crystal structure (Table 1).

Related literature top

For the biological activity of chalcones, see: Hsieh et al. (1998);

Anto et al. (1994). For the effectiveness of chalcones against cancer, see: De Vincenzo et al. (2000); Dimmock et al. (1998).

For bond-length and angle data, see: Ali et al. (2005); Zhou (2007).

Experimental top

A mixture of the 5-methylfurfural (0.02 mol), and 4-methylhypnone (0.02 mol) and 10% NaOH (10 ml) was stirred in ethanol (30 mL) for 3 h to afford the title compound (yield 85%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.96 Å, and with Uiso=1.2–1.5Ueq.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
3-(5-Methyl-2-furyl)-1-(p-tolyl)-2-propen-1-one top
Crystal data top
C15H14O2F(000) = 480
Mr = 226.26Dx = 1.206 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1770 reflections
a = 8.0394 (8) Åθ = 0.4–27.5°
b = 17.0278 (17) ŵ = 0.08 mm1
c = 10.6550 (8) ÅT = 293 K
β = 121.347 (6)°Bar, colourless
V = 1245.7 (2) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1706 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.2°, θmin = 2.4°
phi and ω scansh = 810
7980 measured reflectionsk = 1722
2985 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0613P)2 + 0.0738P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2985 reflectionsΔρmax = 0.17 e Å3
155 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Crystal data top
C15H14O2V = 1245.7 (2) Å3
Mr = 226.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0394 (8) ŵ = 0.08 mm1
b = 17.0278 (17) ÅT = 293 K
c = 10.6550 (8) Å0.2 × 0.2 × 0.2 mm
β = 121.347 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1706 reflections with I > 2σ(I)
7980 measured reflectionsRint = 0.026
2985 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
2985 reflectionsΔρmin = 0.11 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32694 (14)0.22464 (6)0.56944 (10)0.0574 (3)
O20.14482 (19)0.01503 (7)0.24561 (13)0.0810 (4)
C10.5507 (3)0.33021 (11)0.7020 (2)0.0892 (6)
H1A0.62260.35210.79910.134*
H1B0.63950.31400.67220.134*
H1C0.46320.36910.63470.134*
C20.4379 (2)0.26168 (9)0.70182 (17)0.0582 (4)
C30.4181 (2)0.22529 (10)0.80412 (18)0.0656 (4)
H3A0.47790.23930.90260.079*
C40.2899 (3)0.16169 (10)0.73553 (18)0.0665 (4)
H4A0.24970.12590.78040.080*
C50.2364 (2)0.16241 (8)0.59293 (16)0.0545 (4)
C60.1121 (2)0.11417 (9)0.47132 (18)0.0590 (4)
H6A0.05410.07230.49030.071*
C70.0686 (2)0.12165 (9)0.33318 (17)0.0577 (4)
H7A0.12750.16130.30990.069*
C80.0699 (2)0.06898 (9)0.21687 (17)0.0591 (4)
C90.1224 (2)0.08231 (9)0.06208 (16)0.0558 (4)
C100.0379 (2)0.13889 (10)0.02027 (18)0.0683 (5)
H10A0.05500.17240.09080.082*
C110.0888 (3)0.14648 (11)0.1236 (2)0.0761 (5)
H11A0.02870.18500.14830.091*
C120.2260 (3)0.09881 (10)0.23223 (19)0.0701 (5)
C130.3126 (3)0.04334 (11)0.1911 (2)0.0802 (5)
H13A0.40770.01080.26240.096*
C140.2624 (3)0.03474 (10)0.04727 (19)0.0734 (5)
H14A0.32350.00360.02310.088*
C150.2803 (3)0.10657 (13)0.3896 (2)0.0940 (6)
H15A0.20640.14830.39790.141*
H15B0.25250.05820.42150.141*
H15C0.41680.11810.45000.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0672 (6)0.0599 (6)0.0517 (6)0.0065 (5)0.0355 (5)0.0031 (5)
O20.1026 (9)0.0684 (7)0.0750 (8)0.0265 (7)0.0484 (7)0.0067 (6)
C10.1063 (15)0.0854 (13)0.0788 (13)0.0308 (11)0.0503 (11)0.0160 (10)
C20.0607 (9)0.0627 (9)0.0534 (9)0.0021 (7)0.0313 (7)0.0068 (7)
C30.0744 (10)0.0738 (10)0.0502 (9)0.0001 (9)0.0335 (8)0.0025 (8)
C40.0812 (11)0.0691 (10)0.0588 (10)0.0043 (9)0.0430 (9)0.0049 (8)
C50.0587 (9)0.0546 (9)0.0566 (9)0.0013 (7)0.0345 (7)0.0025 (7)
C60.0630 (9)0.0544 (9)0.0658 (10)0.0025 (7)0.0379 (8)0.0015 (7)
C70.0614 (9)0.0544 (9)0.0602 (10)0.0044 (7)0.0337 (8)0.0019 (7)
C80.0624 (9)0.0513 (9)0.0649 (10)0.0011 (7)0.0341 (8)0.0021 (7)
C90.0567 (9)0.0517 (8)0.0568 (9)0.0029 (7)0.0280 (7)0.0030 (7)
C100.0672 (10)0.0725 (11)0.0608 (11)0.0082 (8)0.0302 (8)0.0020 (8)
C110.0758 (12)0.0849 (12)0.0676 (12)0.0017 (10)0.0374 (10)0.0088 (9)
C120.0721 (11)0.0747 (11)0.0597 (11)0.0223 (9)0.0315 (9)0.0060 (8)
C130.0872 (13)0.0762 (12)0.0610 (11)0.0049 (10)0.0273 (10)0.0138 (9)
C140.0856 (12)0.0631 (10)0.0683 (12)0.0131 (9)0.0378 (10)0.0096 (8)
C150.1016 (14)0.1128 (16)0.0632 (12)0.0270 (12)0.0398 (11)0.0108 (10)
Geometric parameters (Å, º) top
O1—C21.3689 (17)C7—H7A0.9300
O1—C51.3800 (16)C8—C91.492 (2)
O2—C81.2218 (17)C9—C101.379 (2)
C1—C21.477 (2)C9—C141.384 (2)
C1—H1A0.9600C10—C111.372 (2)
C1—H1B0.9600C10—H10A0.9300
C1—H1C0.9600C11—C121.374 (2)
C2—C31.333 (2)C11—H11A0.9300
C3—C41.409 (2)C12—C131.374 (2)
C3—H3A0.9300C12—C151.503 (2)
C4—C51.347 (2)C13—C141.374 (2)
C4—H4A0.9300C13—H13A0.9300
C5—C61.416 (2)C14—H14A0.9300
C6—C71.330 (2)C15—H15A0.9600
C6—H6A0.9300C15—H15B0.9600
C7—C81.464 (2)C15—H15C0.9600
C2—O1—C5106.82 (11)O2—C8—C9119.91 (14)
C2—C1—H1A109.5C7—C8—C9119.74 (14)
C2—C1—H1B109.5C10—C9—C14117.28 (15)
H1A—C1—H1B109.5C10—C9—C8124.02 (14)
C2—C1—H1C109.5C14—C9—C8118.69 (15)
H1A—C1—H1C109.5C11—C10—C9121.08 (16)
H1B—C1—H1C109.5C11—C10—H10A119.5
C3—C2—O1109.70 (14)C9—C10—H10A119.5
C3—C2—C1134.46 (16)C10—C11—C12121.87 (17)
O1—C2—C1115.83 (13)C10—C11—H11A119.1
C2—C3—C4107.42 (15)C12—C11—H11A119.1
C2—C3—H3A126.3C11—C12—C13117.08 (17)
C4—C3—H3A126.3C11—C12—C15121.90 (18)
C5—C4—C3107.23 (14)C13—C12—C15121.02 (18)
C5—C4—H4A126.4C12—C13—C14121.72 (17)
C3—C4—H4A126.4C12—C13—H13A119.1
C4—C5—O1108.82 (13)C14—C13—H13A119.1
C4—C5—C6133.33 (14)C13—C14—C9120.96 (17)
O1—C5—C6117.85 (13)C13—C14—H14A119.5
C7—C6—C5127.68 (15)C9—C14—H14A119.5
C7—C6—H6A116.2C12—C15—H15A109.5
C5—C6—H6A116.2C12—C15—H15B109.5
C6—C7—C8121.64 (14)H15A—C15—H15B109.5
C6—C7—H7A119.2C12—C15—H15C109.5
C8—C7—H7A119.2H15A—C15—H15C109.5
O2—C8—C7120.35 (15)H15B—C15—H15C109.5

Experimental details

Crystal data
Chemical formulaC15H14O2
Mr226.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.0394 (8), 17.0278 (17), 10.6550 (8)
β (°) 121.347 (6)
V3)1245.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7980, 2985, 1706
Rint0.026
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.136, 1.02
No. of reflections2985
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.11

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Natural Science Foundation of Wei Fang University (grant No. 2008Z04).

References

First citationAli, H. M., Puvaneswary, S., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, o1079–o1080.  CSD CrossRef IUCr Journals Google Scholar
First citationAnto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73–80.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., Morazzoni, P., Valenti, P., Belluti, F., Ranelletti, F. O., Mancuso, S. & Scambia, G. (2000). Cancer Chemother. Pharmacol. 46, 305–312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014–1026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, L.-Y. (2007). Acta Cryst. E63, o3113.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds