organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5-Bromo-2-hy­droxy­phen­yl)(phen­yl)methanone

aCollege of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and bKey Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: minicocorain@163.com

(Received 26 August 2008; accepted 28 August 2008; online 6 September 2008)

In the title compound, C13H9BrO2, the mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond. In the crystal structure, weak inter­molecular C—H⋯O hydrogen-bonding inter­actions link the mol­ecules into chains along the c-axis direction.

Related literature

For related literature, see: Dale et al. (1999[Dale, C. K., Leslie, A. D. & Stephen, D. F. (1999). J. Phys. Chem. A, 103, 6420-6428.]); Sridhar & Saravanan (2001[Sridhar, S. K. & Saravanan, M. A. (2001). J. Med. Chem. 36, 615-625.]); Wiktor et al. (2000[Wiktor, Z., Danuta, M. & Therese, Z. H. (2000). J. Phys. Chem. A, 104, 11685-11692.]); Hester et al. (2001[Hester, J. B., Nidy, E. G., Perricone, S. C. & Poel, T. J. (2001). C07C257/00. WO Patent 0 144 188.]); Idrees et al. (2001[Idrees, M., Siddique, M., Patil, S. D., Doshi, A. G. & Raut, A. W. (2001). Orient. J. Chem. 17, 131-133.]); Zhou (2006[Zhou, C. X. (2006). J. Org. Chem. 71, 3551-3558.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrO2

  • Mr = 277.10

  • Monoclinic, P 21 /c

  • a = 15.938 (3) Å

  • b = 5.8929 (12) Å

  • c = 12.111 (2) Å

  • β = 106.15 (3)°

  • V = 1092.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.74 mm−1

  • T = 295 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.417, Tmax = 0.689

  • 4878 measured reflections

  • 2292 independent reflections

  • 1767 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.08

  • 2292 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.85 2.570 (3) 146
C13—H13A⋯O2i 0.93 2.59 3.475 (3) 160
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Monocondensed Schiff bases are attractive because of their intermediates in the synthesis of unsymmetrical multidentate Schiff base ligands and metal complexes, which serve as potential chelating agents and catalyst in synthesis and pharmaceutical fields (Hester et al., 2001). New examples are being tested for their antitumor, (Idrees et al., 2001). antimicroial and antiviral activities (Sridhar & Saravanan, 2001). We describe the structure of the title compound is a precursor of monocondensed Schiff bases.

In the title compound, bond lengths are slightly different from those in similar compounds. The C—Br bond length [1.896 (3) Å] is longer than others reported [1.865 (1) (Dale et al., 1999) and 1.884 (2)Å (Wiktor et al., 2000)]. Molecular conformation is stabilized by an intramolecular O—H···O hydrogen bond. In the crystal structure, weak intermolecular C—H···O hydrogen bonding interactions (Table 1) link the molecules into chains along the b-direction.

Related literature top

For related literature, see: Dale et al. (1999); Sridhar & Saravanan (2001); Wiktor et al. (2000); Hester et al. (2001); Idrees et al. (2001); Zhou (2006).

Experimental top

5-Bromo-2-hydroxybenzophenone was prepared via the Fries rearrangement of p-bromophenyl benzoate at 433 K with AlCl3 as the catalyst. The title compound was collected and washed with 10% diluted hydrochloric acid. Single crystals suitable for X-ray measurements were obtained by recrystallization from absolute ethanol and acetic ether (1:1,v/v) at room temperature.

Refinement top

All H atoms were placed at calculated positions and allowed to ride on their attached atoms, with C—H distance = 0.93 Å and O—H = 0.82 Å, and with Uiso =1.2 Ueq (C) and Uiso =1.5 Ueq (O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of (I), viewed down the b axis.
(5-Bromo-2-hydroxyphenyl)(phenyl)methanone top
Crystal data top
C13H9BrO2F(000) = 552
Mr = 277.10Dx = 1.685 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1025 reflections
a = 15.938 (3) Åθ = 1.3–27.0°
b = 5.8929 (12) ŵ = 3.74 mm1
c = 12.111 (2) ÅT = 295 K
β = 106.15 (3)°Block, yellow
V = 1092.6 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed tube1767 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Thin–slice ω scansθmax = 26.7°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1919
Tmin = 0.417, Tmax = 0.689k = 76
4878 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.0875P]
where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C13H9BrO2V = 1092.6 (4) Å3
Mr = 277.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.938 (3) ŵ = 3.74 mm1
b = 5.8929 (12) ÅT = 295 K
c = 12.111 (2) Å0.30 × 0.20 × 0.10 mm
β = 106.15 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2292 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1767 reflections with I > 2σ(I)
Tmin = 0.417, Tmax = 0.689Rint = 0.026
4878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
2292 reflectionsΔρmin = 0.61 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42247 (2)0.27571 (6)0.49704 (3)0.06162 (16)
O10.18993 (15)0.6147 (4)0.49901 (19)0.0609 (6)
O20.28487 (15)0.5189 (4)0.70244 (19)0.0613 (6)
H2A0.24980.59300.65320.092*
C10.11815 (19)0.1537 (5)0.3198 (3)0.0457 (7)
H1A0.12350.04690.37790.055*
C20.06832 (19)0.1057 (5)0.2101 (3)0.0518 (7)
H2B0.03780.03050.19500.062*
C30.0635 (2)0.2590 (5)0.1225 (3)0.0580 (9)
H3A0.03080.22460.04800.070*
C40.1071 (2)0.4629 (5)0.1454 (3)0.0560 (8)
H4A0.10490.56490.08610.067*
C50.1541 (2)0.5160 (5)0.2561 (3)0.0484 (7)
H5A0.18160.65630.27180.058*
C60.16053 (17)0.3611 (5)0.3442 (2)0.0398 (6)
C70.20826 (18)0.4302 (5)0.4640 (3)0.0432 (6)
C80.27492 (18)0.2824 (4)0.5359 (3)0.0387 (6)
C90.30999 (19)0.3350 (5)0.6535 (3)0.0469 (7)
C100.3733 (2)0.1974 (6)0.7230 (3)0.0554 (8)
H10A0.39430.22920.80110.066*
C110.4053 (2)0.0134 (6)0.6774 (3)0.0564 (8)
H11A0.44760.07950.72450.068*
C120.37446 (18)0.0319 (5)0.5617 (3)0.0453 (7)
C130.30905 (17)0.0964 (5)0.4910 (2)0.0408 (6)
H13A0.28760.05950.41360.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0542 (2)0.0546 (2)0.0743 (3)0.01334 (14)0.01486 (18)0.00225 (16)
O10.0721 (15)0.0486 (12)0.0597 (14)0.0165 (11)0.0143 (12)0.0081 (10)
O20.0680 (15)0.0658 (14)0.0489 (13)0.0075 (11)0.0140 (11)0.0156 (11)
C10.0468 (16)0.0418 (14)0.0496 (18)0.0017 (13)0.0151 (14)0.0040 (13)
C20.0443 (17)0.0504 (17)0.057 (2)0.0004 (13)0.0087 (14)0.0051 (15)
C30.0526 (19)0.072 (2)0.0452 (18)0.0139 (16)0.0063 (15)0.0036 (16)
C40.065 (2)0.0589 (19)0.0454 (18)0.0105 (16)0.0173 (16)0.0108 (15)
C50.0524 (18)0.0421 (15)0.0526 (18)0.0039 (13)0.0174 (15)0.0071 (13)
C60.0377 (14)0.0398 (14)0.0428 (16)0.0044 (11)0.0128 (12)0.0016 (12)
C70.0458 (16)0.0391 (14)0.0484 (17)0.0014 (12)0.0194 (13)0.0020 (12)
C80.0360 (14)0.0399 (14)0.0414 (16)0.0049 (11)0.0126 (12)0.0018 (11)
C90.0442 (16)0.0540 (16)0.0450 (18)0.0055 (13)0.0165 (13)0.0029 (13)
C100.0492 (18)0.077 (2)0.0365 (17)0.0005 (16)0.0067 (14)0.0010 (15)
C110.0470 (18)0.072 (2)0.0476 (19)0.0087 (15)0.0084 (14)0.0105 (16)
C120.0402 (15)0.0461 (15)0.0516 (18)0.0020 (12)0.0160 (13)0.0031 (13)
C130.0392 (15)0.0443 (15)0.0387 (16)0.0046 (11)0.0105 (12)0.0001 (12)
Geometric parameters (Å, º) top
Br1—C121.896 (3)C5—C61.386 (4)
O1—C71.231 (3)C5—H5A0.9300
O2—C91.348 (4)C6—C71.495 (4)
O2—H2A0.8200C7—C81.460 (4)
C1—C21.374 (4)C8—C131.400 (4)
C1—C61.388 (4)C8—C91.412 (4)
C1—H1A0.9300C9—C101.383 (4)
C2—C31.379 (5)C10—C111.378 (4)
C2—H2B0.9300C10—H10A0.9300
C3—C41.378 (4)C11—C121.377 (4)
C3—H3A0.9300C11—H11A0.9300
C4—C51.377 (4)C12—C131.376 (4)
C4—H4A0.9300C13—H13A0.9300
C9—O2—H2A109.5O1—C7—C6118.0 (3)
C2—C1—C6120.2 (3)C8—C7—C6120.4 (2)
C2—C1—H1A119.9C13—C8—C9118.5 (3)
C6—C1—H1A119.9C13—C8—C7122.2 (3)
C1—C2—C3120.2 (3)C9—C8—C7119.3 (3)
C1—C2—H2B119.9O2—C9—C10117.3 (3)
C3—C2—H2B119.9O2—C9—C8122.5 (3)
C4—C3—C2120.0 (3)C10—C9—C8120.2 (3)
C4—C3—H3A120.0C11—C10—C9120.4 (3)
C2—C3—H3A120.0C11—C10—H10A119.8
C5—C4—C3120.1 (3)C9—C10—H10A119.8
C5—C4—H4A120.0C12—C11—C10119.6 (3)
C3—C4—H4A120.0C12—C11—H11A120.2
C4—C5—C6120.2 (3)C10—C11—H11A120.2
C4—C5—H5A119.9C13—C12—C11121.4 (3)
C6—C5—H5A119.9C13—C12—Br1118.8 (2)
C5—C6—C1119.2 (3)C11—C12—Br1119.8 (2)
C5—C6—C7118.5 (3)C12—C13—C8119.8 (3)
C1—C6—C7122.2 (3)C12—C13—H13A120.1
O1—C7—C8121.6 (3)C8—C13—H13A120.1
C6—C1—C2—C33.1 (5)C6—C7—C8—C9170.9 (2)
C1—C2—C3—C41.4 (5)C13—C8—C9—O2175.9 (3)
C2—C3—C4—C51.4 (5)C7—C8—C9—O20.6 (4)
C3—C4—C5—C62.5 (5)C13—C8—C9—C103.4 (4)
C4—C5—C6—C10.9 (4)C7—C8—C9—C10179.9 (3)
C4—C5—C6—C7176.9 (3)O2—C9—C10—C11176.6 (3)
C2—C1—C6—C51.9 (4)C8—C9—C10—C112.8 (5)
C2—C1—C6—C7173.9 (3)C9—C10—C11—C120.5 (5)
C5—C6—C7—O148.6 (4)C10—C11—C12—C133.1 (5)
C1—C6—C7—O1127.3 (3)C10—C11—C12—Br1176.9 (2)
C5—C6—C7—C8130.9 (3)C11—C12—C13—C82.4 (4)
C1—C6—C7—C853.2 (4)Br1—C12—C13—C8177.60 (19)
O1—C7—C8—C13166.7 (3)C9—C8—C13—C120.9 (4)
C6—C7—C8—C1312.8 (4)C7—C8—C13—C12177.2 (2)
O1—C7—C8—C99.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.852.570 (3)146
C13—H13A···O2i0.932.593.475 (3)160
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H9BrO2
Mr277.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.938 (3), 5.8929 (12), 12.111 (2)
β (°) 106.15 (3)
V3)1092.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.74
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.417, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
4878, 2292, 1767
Rint0.026
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.08
No. of reflections2292
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.61

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Selected bond lengths (Å) top
Br1—C121.896 (3)O2—C91.348 (4)
O1—C71.231 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.852.570 (3)146
C13—H13A···O2i0.932.593.475 (3)160
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Q2006B02).

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDale, C. K., Leslie, A. D. & Stephen, D. F. (1999). J. Phys. Chem. A, 103, 6420–6428.  Google Scholar
First citationHester, J. B., Nidy, E. G., Perricone, S. C. & Poel, T. J. (2001). C07C257/00. WO Patent 0 144 188.  Google Scholar
First citationIdrees, M., Siddique, M., Patil, S. D., Doshi, A. G. & Raut, A. W. (2001). Orient. J. Chem. 17, 131–133.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K. & Saravanan, M. A. (2001). J. Med. Chem. 36, 615–625.  CrossRef CAS Google Scholar
First citationWiktor, Z., Danuta, M. & Therese, Z. H. (2000). J. Phys. Chem. A, 104, 11685–11692.  Google Scholar
First citationZhou, C. X. (2006). J. Org. Chem. 71, 3551–3558.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds