organic compounds
2-(2-Chloropyrimidin-4-yl)-3,5,6,7,8,9-hexahydro-2H-1,2,4-triazolo[4,3-a]azepin-3-one
aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and bDepartment of Chemistry, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: yfling2000cn@yahoo.com.cn
In the title compound, C11H12ClN5O, the triazolone and pyrimidine rings are almost coplanar [dihedral angle = 2.98 (14)°]. The total puckering amplitude QT of the seven-membered lactam ring is 0.706 (3) Å.
Related literature
For the applications of pyrimidine derivatives as pesticides and pharmaceutical agents, see: Condon et al. (1993); as agrochemicals, see: Maeno et al. (1990); as antiviral agents, see: Gilchrist (1997); as herbicides, see: Selby et al. (2002). For puckering paramteres, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808028900/at2624sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808028900/at2624Isup2.hkl
The reaction of 6,7,8,9-tetrahydro-2H-[1,2,4]triazolo[4,3-a]azepin-3(5H)-one (0.184 g, 1.2 mmol) with 4-(3-chlorophenoxy)-2-chloropyrimidine (0.241 g, 1 mmol) in the precence of potassium carbonate (0.207 g, 1.5 mmol) was carried out in N,N-dimethylformamide (20 ml) at 343 K overnight. The reaction was cooled and partitioned between 20 ml dichloromethane and 20 ml water. The aqueous layer was extracted with dichloromethane. After removal of the solvent, colourless crystals were obtained by recrystallization from ethyl acetate solution by slow evaporation (yield 30%).
All H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level. |
C11H12ClN5O | F(000) = 552 |
Mr = 265.71 | Dx = 1.467 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1409 reflections |
a = 8.6810 (16) Å | θ = 2.6–21.9° |
b = 14.718 (3) Å | µ = 0.31 mm−1 |
c = 9.4251 (17) Å | T = 294 K |
β = 92.359 (3)° | Prism, colourless |
V = 1203.2 (4) Å3 | 0.24 × 0.16 × 0.10 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2461 independent reflections |
Radiation source: fine-focus sealed tube | 1291 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ϕ and oω scans | θmax = 26.4°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→8 |
Tmin = 0.926, Tmax = 0.969 | k = −18→17 |
6734 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1252P] where P = (Fo2 + 2Fc2)/3 |
2461 reflections | (Δ/σ)max = 0.002 |
163 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C11H12ClN5O | V = 1203.2 (4) Å3 |
Mr = 265.71 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.6810 (16) Å | µ = 0.31 mm−1 |
b = 14.718 (3) Å | T = 294 K |
c = 9.4251 (17) Å | 0.24 × 0.16 × 0.10 mm |
β = 92.359 (3)° |
Bruker SMART CCD area-detector diffractometer | 2461 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1291 reflections with I > 2σ(I) |
Tmin = 0.926, Tmax = 0.969 | Rint = 0.047 |
6734 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.21 e Å−3 |
2461 reflections | Δρmin = −0.23 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.10477 (10) | 0.59079 (6) | 0.12418 (10) | 0.0753 (3) | |
O1 | 0.6140 (2) | 0.37929 (13) | 0.5659 (2) | 0.0643 (6) | |
N1 | 0.7797 (2) | 0.25640 (15) | 0.5395 (2) | 0.0446 (6) | |
N2 | 0.8353 (3) | 0.38014 (15) | 0.4293 (2) | 0.0462 (6) | |
N3 | 0.9482 (3) | 0.31650 (15) | 0.3968 (2) | 0.0505 (6) | |
N4 | 0.9548 (3) | 0.48516 (15) | 0.2886 (2) | 0.0488 (6) | |
N5 | 0.8656 (3) | 0.63806 (16) | 0.2619 (3) | 0.0603 (7) | |
C1 | 0.9097 (3) | 0.24464 (18) | 0.4640 (3) | 0.0463 (7) | |
C2 | 0.9975 (4) | 0.1581 (2) | 0.4627 (3) | 0.0600 (9) | |
H2A | 1.0848 | 0.1655 | 0.4028 | 0.072* | |
H2B | 0.9318 | 0.1111 | 0.4206 | 0.072* | |
C3 | 1.0563 (3) | 0.1263 (2) | 0.6091 (3) | 0.0580 (8) | |
H3A | 1.1356 | 0.0808 | 0.5974 | 0.070* | |
H3B | 1.1035 | 0.1775 | 0.6591 | 0.070* | |
C4 | 0.9327 (4) | 0.0867 (2) | 0.6996 (3) | 0.0596 (8) | |
H4A | 0.9824 | 0.0608 | 0.7844 | 0.072* | |
H4B | 0.8829 | 0.0373 | 0.6472 | 0.072* | |
C5 | 0.8092 (4) | 0.1522 (2) | 0.7447 (3) | 0.0582 (8) | |
H5A | 0.7464 | 0.1216 | 0.8127 | 0.070* | |
H5B | 0.8593 | 0.2029 | 0.7933 | 0.070* | |
C6 | 0.7045 (3) | 0.18922 (19) | 0.6280 (3) | 0.0517 (8) | |
H6A | 0.6676 | 0.1394 | 0.5684 | 0.062* | |
H6B | 0.6157 | 0.2171 | 0.6696 | 0.062* | |
C7 | 0.7269 (3) | 0.34300 (19) | 0.5188 (3) | 0.0456 (7) | |
C8 | 0.8418 (3) | 0.46838 (18) | 0.3766 (3) | 0.0431 (7) | |
C9 | 0.7356 (3) | 0.53480 (18) | 0.4117 (3) | 0.0492 (7) | |
H9 | 0.6562 | 0.5230 | 0.4723 | 0.059* | |
C10 | 0.7550 (4) | 0.6178 (2) | 0.3520 (3) | 0.0601 (9) | |
H10 | 0.6869 | 0.6637 | 0.3752 | 0.072* | |
C11 | 0.9571 (3) | 0.5687 (2) | 0.2385 (3) | 0.0502 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0592 (6) | 0.0746 (6) | 0.0940 (7) | −0.0024 (5) | 0.0242 (5) | 0.0263 (5) |
O1 | 0.0519 (13) | 0.0689 (14) | 0.0746 (14) | 0.0205 (11) | 0.0324 (11) | 0.0145 (11) |
N1 | 0.0400 (14) | 0.0512 (14) | 0.0438 (13) | 0.0063 (11) | 0.0147 (11) | 0.0071 (11) |
N2 | 0.0433 (14) | 0.0459 (14) | 0.0508 (14) | 0.0082 (11) | 0.0167 (11) | 0.0065 (11) |
N3 | 0.0451 (15) | 0.0494 (14) | 0.0587 (15) | 0.0120 (12) | 0.0224 (12) | 0.0085 (12) |
N4 | 0.0409 (14) | 0.0527 (15) | 0.0535 (15) | 0.0011 (11) | 0.0097 (12) | 0.0097 (12) |
N5 | 0.0670 (19) | 0.0487 (15) | 0.0658 (17) | 0.0016 (13) | 0.0091 (14) | 0.0049 (13) |
C1 | 0.0444 (17) | 0.0501 (17) | 0.0456 (16) | 0.0077 (14) | 0.0171 (13) | 0.0042 (14) |
C2 | 0.062 (2) | 0.0566 (18) | 0.064 (2) | 0.0175 (16) | 0.0283 (16) | 0.0089 (16) |
C3 | 0.0465 (19) | 0.0531 (18) | 0.075 (2) | 0.0107 (15) | 0.0113 (16) | 0.0119 (16) |
C4 | 0.058 (2) | 0.0604 (19) | 0.0612 (19) | 0.0065 (16) | 0.0093 (16) | 0.0161 (16) |
C5 | 0.060 (2) | 0.067 (2) | 0.0485 (17) | 0.0048 (16) | 0.0130 (15) | 0.0141 (16) |
C6 | 0.0426 (17) | 0.0586 (18) | 0.0551 (18) | −0.0039 (15) | 0.0166 (14) | 0.0098 (15) |
C7 | 0.0424 (17) | 0.0532 (17) | 0.0418 (16) | 0.0049 (14) | 0.0102 (13) | 0.0054 (14) |
C8 | 0.0407 (16) | 0.0493 (17) | 0.0393 (16) | −0.0002 (13) | 0.0015 (13) | 0.0012 (13) |
C9 | 0.0495 (18) | 0.0514 (18) | 0.0472 (17) | 0.0023 (15) | 0.0100 (14) | −0.0039 (14) |
C10 | 0.070 (2) | 0.0496 (18) | 0.061 (2) | 0.0104 (17) | 0.0104 (18) | −0.0016 (16) |
C11 | 0.0445 (18) | 0.0543 (19) | 0.0520 (18) | −0.0051 (15) | 0.0045 (14) | 0.0060 (15) |
Cl1—C11 | 1.739 (3) | C2—H2B | 0.9700 |
O1—C7 | 1.216 (3) | C3—C4 | 1.514 (4) |
N1—C7 | 1.366 (3) | C3—H3A | 0.9700 |
N1—C1 | 1.370 (3) | C3—H3B | 0.9700 |
N1—C6 | 1.465 (3) | C4—C5 | 1.516 (4) |
N2—C8 | 1.392 (3) | C4—H4A | 0.9700 |
N2—N3 | 1.399 (3) | C4—H4B | 0.9700 |
N2—C7 | 1.400 (3) | C5—C6 | 1.500 (4) |
N3—C1 | 1.284 (3) | C5—H5A | 0.9700 |
N4—C11 | 1.318 (3) | C5—H5B | 0.9700 |
N4—C8 | 1.333 (3) | C6—H6A | 0.9700 |
N5—C11 | 1.317 (4) | C6—H6B | 0.9700 |
N5—C10 | 1.341 (4) | C8—C9 | 1.393 (4) |
C1—C2 | 1.485 (4) | C9—C10 | 1.358 (4) |
C2—C3 | 1.525 (4) | C9—H9 | 0.9300 |
C2—H2A | 0.9700 | C10—H10 | 0.9300 |
C7—N1—C1 | 108.8 (2) | H4A—C4—H4B | 107.4 |
C7—N1—C6 | 123.8 (2) | C6—C5—C4 | 116.1 (2) |
C1—N1—C6 | 127.4 (2) | C6—C5—H5A | 108.3 |
C8—N2—N3 | 120.5 (2) | C4—C5—H5A | 108.3 |
C8—N2—C7 | 128.1 (2) | C6—C5—H5B | 108.3 |
N3—N2—C7 | 111.4 (2) | C4—C5—H5B | 108.3 |
C1—N3—N2 | 104.1 (2) | H5A—C5—H5B | 107.4 |
C11—N4—C8 | 114.7 (2) | N1—C6—C5 | 113.1 (2) |
C11—N5—C10 | 112.7 (2) | N1—C6—H6A | 109.0 |
N3—C1—N1 | 112.9 (2) | C5—C6—H6A | 109.0 |
N3—C1—C2 | 124.0 (2) | N1—C6—H6B | 109.0 |
N1—C1—C2 | 123.2 (2) | C5—C6—H6B | 109.0 |
C1—C2—C3 | 114.1 (2) | H6A—C6—H6B | 107.8 |
C1—C2—H2A | 108.7 | O1—C7—N1 | 128.9 (2) |
C3—C2—H2A | 108.7 | O1—C7—N2 | 128.3 (3) |
C1—C2—H2B | 108.7 | N1—C7—N2 | 102.8 (2) |
C3—C2—H2B | 108.7 | N4—C8—N2 | 115.9 (2) |
H2A—C2—H2B | 107.6 | N4—C8—C9 | 121.9 (3) |
C4—C3—C2 | 114.1 (3) | N2—C8—C9 | 122.2 (2) |
C4—C3—H3A | 108.7 | C10—C9—C8 | 116.0 (3) |
C2—C3—H3A | 108.7 | C10—C9—H9 | 122.0 |
C4—C3—H3B | 108.7 | C8—C9—H9 | 122.0 |
C2—C3—H3B | 108.7 | N5—C10—C9 | 124.5 (3) |
H3A—C3—H3B | 107.6 | N5—C10—H10 | 117.8 |
C3—C4—C5 | 116.0 (3) | C9—C10—H10 | 117.8 |
C3—C4—H4A | 108.3 | N5—C11—N4 | 130.2 (3) |
C5—C4—H4A | 108.3 | N5—C11—Cl1 | 115.1 (2) |
C3—C4—H4B | 108.3 | N4—C11—Cl1 | 114.7 (2) |
C5—C4—H4B | 108.3 | ||
C8—N2—N3—C1 | 178.5 (2) | C6—N1—C7—N2 | 179.7 (2) |
C7—N2—N3—C1 | −0.2 (3) | C8—N2—C7—O1 | 2.1 (5) |
N2—N3—C1—N1 | −0.3 (3) | N3—N2—C7—O1 | −179.3 (3) |
N2—N3—C1—C2 | −179.5 (3) | C8—N2—C7—N1 | −177.9 (3) |
C7—N1—C1—N3 | 0.8 (3) | N3—N2—C7—N1 | 0.7 (3) |
C6—N1—C1—N3 | −179.7 (3) | C11—N4—C8—N2 | 179.0 (2) |
C7—N1—C1—C2 | 179.9 (3) | C11—N4—C8—C9 | 0.0 (4) |
C6—N1—C1—C2 | −0.6 (4) | N3—N2—C8—N4 | 3.9 (4) |
N3—C1—C2—C3 | 120.7 (3) | C7—N2—C8—N4 | −177.6 (2) |
N1—C1—C2—C3 | −58.3 (4) | N3—N2—C8—C9 | −177.1 (2) |
C1—C2—C3—C4 | 75.0 (4) | C7—N2—C8—C9 | 1.4 (4) |
C2—C3—C4—C5 | −65.9 (4) | N4—C8—C9—C10 | −0.6 (4) |
C3—C4—C5—C6 | 66.4 (4) | N2—C8—C9—C10 | −179.6 (3) |
C7—N1—C6—C5 | −122.9 (3) | C11—N5—C10—C9 | −1.2 (5) |
C1—N1—C6—C5 | 57.7 (4) | C8—C9—C10—N5 | 1.3 (5) |
C4—C5—C6—N1 | −73.1 (4) | C10—N5—C11—N4 | 0.4 (5) |
C1—N1—C7—O1 | 179.1 (3) | C10—N5—C11—Cl1 | −179.2 (2) |
C6—N1—C7—O1 | −0.4 (5) | C8—N4—C11—N5 | 0.1 (5) |
C1—N1—C7—N2 | −0.8 (3) | C8—N4—C11—Cl1 | 179.8 (2) |
Experimental details
Crystal data | |
Chemical formula | C11H12ClN5O |
Mr | 265.71 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 8.6810 (16), 14.718 (3), 9.4251 (17) |
β (°) | 92.359 (3) |
V (Å3) | 1203.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.24 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.926, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6734, 2461, 1291 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.130, 1.01 |
No. of reflections | 2461 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.23 |
Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by the Program for New Century Excellent Talents in Universities of Henan Province (grant No. 2005HANCET-17), the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).
References
Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman. Google Scholar
Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications. Google Scholar
Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74–84. Washington DC: American Chemical Society. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as azidothymidine (AZT), which is the most widely used anti-AIDS drug (Gilchrist, 1997). Recently, a new series of highly active herbicides of substituted azolylpyrimidines were reported (Selby et al., 2002). In order to discover further biologically active pyrimidine compounds, the title compound, (I), was synthesized and its crystal structure determined (Fig. 1).
In the crystal structure of (I), the triazolone and pyrimidine rings are almost coplanar. The dihedral angle between them is 2.99 (18)°. The total puckering amplitude QT (Cremer & Pople, 1975) of the seven-membered lactam ring gives a quantitative evaluation of puckering being 0.706 (3) Å.