organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Chloro­pyrimidin-4-yl)-3,5,6,7,8,9-hexa­hydro-2H-1,2,4-triazolo[4,3-a]azepin-3-one

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and bDepartment of Chemistry, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: yfling2000cn@yahoo.com.cn

(Received 28 August 2008; accepted 9 September 2008; online 13 September 2008)

In the title compound, C11H12ClN5O, the triazolone and pyrimidine rings are almost coplanar [dihedral angle = 2.98 (14)°]. The total puckering amplitude QT of the seven-membered lactam ring is 0.706 (3) Å.

Related literature

For the applications of pyrimidine derivatives as pesticides and pharmaceutical agents, see: Condon et al. (1993[Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41-46. Alton, Hampshire, England: BCPC Publications.]); as agrochemicals, see: Maeno et al. (1990[Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415-422. Alton, Hampshire, England: BCPC Publications.]); as anti­viral agents, see: Gilchrist (1997[Gilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261-276. Singapore: Addison Wesley Longman.]); as herbicides, see: Selby et al. (2002[Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74-84. Washington DC: American Chemical Society.]). For puckering paramteres, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClN5O

  • Mr = 265.71

  • Monoclinic, P 21 /n

  • a = 8.6810 (16) Å

  • b = 14.718 (3) Å

  • c = 9.4251 (17) Å

  • β = 92.359 (3)°

  • V = 1203.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 294 (2) K

  • 0.24 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.969

  • 6734 measured reflections

  • 2461 independent reflections

  • 1291 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.130

  • S = 1.01

  • 2461 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrimidine derivatives are very important molecules in biology and have many application in the areas of pesticide and pharmaceutical agents (Condon et al., 1993). For example, imazosulfuron, ethirmol and mepanipyrim have been commercialized as agrochemicals (Maeno et al., 1990). Pyrimidine derivatives have also been developed as antiviral agents, such as azidothymidine (AZT), which is the most widely used anti-AIDS drug (Gilchrist, 1997). Recently, a new series of highly active herbicides of substituted azolylpyrimidines were reported (Selby et al., 2002). In order to discover further biologically active pyrimidine compounds, the title compound, (I), was synthesized and its crystal structure determined (Fig. 1).

In the crystal structure of (I), the triazolone and pyrimidine rings are almost coplanar. The dihedral angle between them is 2.99 (18)°. The total puckering amplitude QT (Cremer & Pople, 1975) of the seven-membered lactam ring gives a quantitative evaluation of puckering being 0.706 (3) Å.

Related literature top

For the applications of pyrimidine derivatives as pesticides and pharmaceutical agents, see: Condon et al. (1993); as agrochemicals, see: Maeno et al. (1990); as antiviral agents, see: Gilchrist (1997); as herbicides, see: Selby et al. (2002). For puckering paramteres, see: Cremer & Pople (1975).

Experimental top

The reaction of 6,7,8,9-tetrahydro-2H-[1,2,4]triazolo[4,3-a]azepin-3(5H)-one (0.184 g, 1.2 mmol) with 4-(3-chlorophenoxy)-2-chloropyrimidine (0.241 g, 1 mmol) in the precence of potassium carbonate (0.207 g, 1.5 mmol) was carried out in N,N-dimethylformamide (20 ml) at 343 K overnight. The reaction was cooled and partitioned between 20 ml dichloromethane and 20 ml water. The aqueous layer was extracted with dichloromethane. After removal of the solvent, colourless crystals were obtained by recrystallization from ethyl acetate solution by slow evaporation (yield 30%).

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 30% probability level.
2-(2-Chloropyrimidin-4-yl)-3,5,6,7,8,9-hexahydro-2H-1,2,4- triazolo[4,3-a]azepin-3-one top
Crystal data top
C11H12ClN5OF(000) = 552
Mr = 265.71Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1409 reflections
a = 8.6810 (16) Åθ = 2.6–21.9°
b = 14.718 (3) ŵ = 0.31 mm1
c = 9.4251 (17) ÅT = 294 K
β = 92.359 (3)°Prism, colourless
V = 1203.2 (4) Å30.24 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2461 independent reflections
Radiation source: fine-focus sealed tube1291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and oω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.926, Tmax = 0.969k = 1817
6734 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1252P]
where P = (Fo2 + 2Fc2)/3
2461 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C11H12ClN5OV = 1203.2 (4) Å3
Mr = 265.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6810 (16) ŵ = 0.31 mm1
b = 14.718 (3) ÅT = 294 K
c = 9.4251 (17) Å0.24 × 0.16 × 0.10 mm
β = 92.359 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2461 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1291 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.969Rint = 0.047
6734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
2461 reflectionsΔρmin = 0.23 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.10477 (10)0.59079 (6)0.12418 (10)0.0753 (3)
O10.6140 (2)0.37929 (13)0.5659 (2)0.0643 (6)
N10.7797 (2)0.25640 (15)0.5395 (2)0.0446 (6)
N20.8353 (3)0.38014 (15)0.4293 (2)0.0462 (6)
N30.9482 (3)0.31650 (15)0.3968 (2)0.0505 (6)
N40.9548 (3)0.48516 (15)0.2886 (2)0.0488 (6)
N50.8656 (3)0.63806 (16)0.2619 (3)0.0603 (7)
C10.9097 (3)0.24464 (18)0.4640 (3)0.0463 (7)
C20.9975 (4)0.1581 (2)0.4627 (3)0.0600 (9)
H2A1.08480.16550.40280.072*
H2B0.93180.11110.42060.072*
C31.0563 (3)0.1263 (2)0.6091 (3)0.0580 (8)
H3A1.13560.08080.59740.070*
H3B1.10350.17750.65910.070*
C40.9327 (4)0.0867 (2)0.6996 (3)0.0596 (8)
H4A0.98240.06080.78440.072*
H4B0.88290.03730.64720.072*
C50.8092 (4)0.1522 (2)0.7447 (3)0.0582 (8)
H5A0.74640.12160.81270.070*
H5B0.85930.20290.79330.070*
C60.7045 (3)0.18922 (19)0.6280 (3)0.0517 (8)
H6A0.66760.13940.56840.062*
H6B0.61570.21710.66960.062*
C70.7269 (3)0.34300 (19)0.5188 (3)0.0456 (7)
C80.8418 (3)0.46838 (18)0.3766 (3)0.0431 (7)
C90.7356 (3)0.53480 (18)0.4117 (3)0.0492 (7)
H90.65620.52300.47230.059*
C100.7550 (4)0.6178 (2)0.3520 (3)0.0601 (9)
H100.68690.66370.37520.072*
C110.9571 (3)0.5687 (2)0.2385 (3)0.0502 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0592 (6)0.0746 (6)0.0940 (7)0.0024 (5)0.0242 (5)0.0263 (5)
O10.0519 (13)0.0689 (14)0.0746 (14)0.0205 (11)0.0324 (11)0.0145 (11)
N10.0400 (14)0.0512 (14)0.0438 (13)0.0063 (11)0.0147 (11)0.0071 (11)
N20.0433 (14)0.0459 (14)0.0508 (14)0.0082 (11)0.0167 (11)0.0065 (11)
N30.0451 (15)0.0494 (14)0.0587 (15)0.0120 (12)0.0224 (12)0.0085 (12)
N40.0409 (14)0.0527 (15)0.0535 (15)0.0011 (11)0.0097 (12)0.0097 (12)
N50.0670 (19)0.0487 (15)0.0658 (17)0.0016 (13)0.0091 (14)0.0049 (13)
C10.0444 (17)0.0501 (17)0.0456 (16)0.0077 (14)0.0171 (13)0.0042 (14)
C20.062 (2)0.0566 (18)0.064 (2)0.0175 (16)0.0283 (16)0.0089 (16)
C30.0465 (19)0.0531 (18)0.075 (2)0.0107 (15)0.0113 (16)0.0119 (16)
C40.058 (2)0.0604 (19)0.0612 (19)0.0065 (16)0.0093 (16)0.0161 (16)
C50.060 (2)0.067 (2)0.0485 (17)0.0048 (16)0.0130 (15)0.0141 (16)
C60.0426 (17)0.0586 (18)0.0551 (18)0.0039 (15)0.0166 (14)0.0098 (15)
C70.0424 (17)0.0532 (17)0.0418 (16)0.0049 (14)0.0102 (13)0.0054 (14)
C80.0407 (16)0.0493 (17)0.0393 (16)0.0002 (13)0.0015 (13)0.0012 (13)
C90.0495 (18)0.0514 (18)0.0472 (17)0.0023 (15)0.0100 (14)0.0039 (14)
C100.070 (2)0.0496 (18)0.061 (2)0.0104 (17)0.0104 (18)0.0016 (16)
C110.0445 (18)0.0543 (19)0.0520 (18)0.0051 (15)0.0045 (14)0.0060 (15)
Geometric parameters (Å, º) top
Cl1—C111.739 (3)C2—H2B0.9700
O1—C71.216 (3)C3—C41.514 (4)
N1—C71.366 (3)C3—H3A0.9700
N1—C11.370 (3)C3—H3B0.9700
N1—C61.465 (3)C4—C51.516 (4)
N2—C81.392 (3)C4—H4A0.9700
N2—N31.399 (3)C4—H4B0.9700
N2—C71.400 (3)C5—C61.500 (4)
N3—C11.284 (3)C5—H5A0.9700
N4—C111.318 (3)C5—H5B0.9700
N4—C81.333 (3)C6—H6A0.9700
N5—C111.317 (4)C6—H6B0.9700
N5—C101.341 (4)C8—C91.393 (4)
C1—C21.485 (4)C9—C101.358 (4)
C2—C31.525 (4)C9—H90.9300
C2—H2A0.9700C10—H100.9300
C7—N1—C1108.8 (2)H4A—C4—H4B107.4
C7—N1—C6123.8 (2)C6—C5—C4116.1 (2)
C1—N1—C6127.4 (2)C6—C5—H5A108.3
C8—N2—N3120.5 (2)C4—C5—H5A108.3
C8—N2—C7128.1 (2)C6—C5—H5B108.3
N3—N2—C7111.4 (2)C4—C5—H5B108.3
C1—N3—N2104.1 (2)H5A—C5—H5B107.4
C11—N4—C8114.7 (2)N1—C6—C5113.1 (2)
C11—N5—C10112.7 (2)N1—C6—H6A109.0
N3—C1—N1112.9 (2)C5—C6—H6A109.0
N3—C1—C2124.0 (2)N1—C6—H6B109.0
N1—C1—C2123.2 (2)C5—C6—H6B109.0
C1—C2—C3114.1 (2)H6A—C6—H6B107.8
C1—C2—H2A108.7O1—C7—N1128.9 (2)
C3—C2—H2A108.7O1—C7—N2128.3 (3)
C1—C2—H2B108.7N1—C7—N2102.8 (2)
C3—C2—H2B108.7N4—C8—N2115.9 (2)
H2A—C2—H2B107.6N4—C8—C9121.9 (3)
C4—C3—C2114.1 (3)N2—C8—C9122.2 (2)
C4—C3—H3A108.7C10—C9—C8116.0 (3)
C2—C3—H3A108.7C10—C9—H9122.0
C4—C3—H3B108.7C8—C9—H9122.0
C2—C3—H3B108.7N5—C10—C9124.5 (3)
H3A—C3—H3B107.6N5—C10—H10117.8
C3—C4—C5116.0 (3)C9—C10—H10117.8
C3—C4—H4A108.3N5—C11—N4130.2 (3)
C5—C4—H4A108.3N5—C11—Cl1115.1 (2)
C3—C4—H4B108.3N4—C11—Cl1114.7 (2)
C5—C4—H4B108.3
C8—N2—N3—C1178.5 (2)C6—N1—C7—N2179.7 (2)
C7—N2—N3—C10.2 (3)C8—N2—C7—O12.1 (5)
N2—N3—C1—N10.3 (3)N3—N2—C7—O1179.3 (3)
N2—N3—C1—C2179.5 (3)C8—N2—C7—N1177.9 (3)
C7—N1—C1—N30.8 (3)N3—N2—C7—N10.7 (3)
C6—N1—C1—N3179.7 (3)C11—N4—C8—N2179.0 (2)
C7—N1—C1—C2179.9 (3)C11—N4—C8—C90.0 (4)
C6—N1—C1—C20.6 (4)N3—N2—C8—N43.9 (4)
N3—C1—C2—C3120.7 (3)C7—N2—C8—N4177.6 (2)
N1—C1—C2—C358.3 (4)N3—N2—C8—C9177.1 (2)
C1—C2—C3—C475.0 (4)C7—N2—C8—C91.4 (4)
C2—C3—C4—C565.9 (4)N4—C8—C9—C100.6 (4)
C3—C4—C5—C666.4 (4)N2—C8—C9—C10179.6 (3)
C7—N1—C6—C5122.9 (3)C11—N5—C10—C91.2 (5)
C1—N1—C6—C557.7 (4)C8—C9—C10—N51.3 (5)
C4—C5—C6—N173.1 (4)C10—N5—C11—N40.4 (5)
C1—N1—C7—O1179.1 (3)C10—N5—C11—Cl1179.2 (2)
C6—N1—C7—O10.4 (5)C8—N4—C11—N50.1 (5)
C1—N1—C7—N20.8 (3)C8—N4—C11—Cl1179.8 (2)

Experimental details

Crystal data
Chemical formulaC11H12ClN5O
Mr265.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.6810 (16), 14.718 (3), 9.4251 (17)
β (°) 92.359 (3)
V3)1203.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
6734, 2461, 1291
Rint0.047
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 1.01
No. of reflections2461
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in Universities of Henan Province (grant No. 2005HANCET-17), the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCondon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Protection Conference on Weeds, pp. 41–46. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGilchrist, T. L. (1997). Heterocyclic Chemistry, 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.  Google Scholar
First citationMaeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422. Alton, Hampshire, England: BCPC Publications.  Google Scholar
First citationSelby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74–84. Washington DC: American Chemical Society.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds