metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1250-m1251

(Imidazole-κN3){N-[1-(2-oxido­phenyl)ethyl­idene]-L-valinato-κ3O,N,O′}copper(II)

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: zgq1118@163.com

(Received 2 September 2008; accepted 3 September 2008; online 6 September 2008)

In each of the two independent mol­ecules in the asymmetric unit of the title compound, [Cu(C13H15NO3)(C3H4N2)], the CuII atom is four-coordinated by two O atoms and the N atom of the tridentate Schiff base ligand and one N atom from the imidazole ligand in a distorted square-planar geometry. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Basu Baul et al. (2007[Basu Baul, T. S., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849-4862.]); Casella & Guillotti (1983[Casella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259-2266.]); Ganguly et al. (2008[Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027-1050.]); Parekh et al. (2006[Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67-72.]); Plesch et al. (1997[Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433-440.]); Usman et al. (2003[Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438-m440.]); Vigato & Tamburini (2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H15NO3)(C3H4N2)]

  • Mr = 364.88

  • Orthorhombic, P 21 21 21

  • a = 12.2025 (13) Å

  • b = 13.5248 (14) Å

  • c = 19.791 (2) Å

  • V = 3266.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 296 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.687, Tmax = 0.773

  • 17018 measured reflections

  • 5764 independent reflections

  • 4619 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.086

  • S = 1.03

  • 5764 reflections

  • 421 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2509 Friedel pairs

  • Flack parameter: 0.004 (13)

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.867 (3)
Cu1—N1 1.941 (3)
Cu1—O2 1.945 (2)
Cu1—N2 1.972 (3)
Cu2—O4 1.868 (3)
Cu2—N4 1.937 (3)
Cu2—O5 1.949 (3)
Cu2—N5 1.969 (3)
O1—Cu1—N1 92.94 (13)
O1—Cu1—O2 175.69 (13)
N1—Cu1—O2 85.25 (12)
O1—Cu1—N2 90.51 (12)
N1—Cu1—N2 169.97 (14)
O2—Cu1—N2 91.92 (11)
O4—Cu2—N4 92.79 (13)
O4—Cu2—O5 173.64 (14)
N4—Cu2—O5 84.85 (12)
O4—Cu2—N5 90.96 (12)
N4—Cu2—N5 170.17 (14)
O5—Cu2—N5 92.32 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O6i 0.86 1.91 2.764 (4) 172
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-hydroxyacetophenone and animo acids (Usman et al., 2003; Basu Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title CuII complex, (I).

In the title compound (I), the asymmetric unit contains two independent molecules (Fig. 1). The structure consists of discrete monomeric square-planar CuII complex (Table 1). The four basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the imidazole ligand. In the molecules with Cu1 and Cu2, the nitrogen heterocycles are planar and they form the angles of 4.2 (2) and 6.0 (2)° with the C1—C6 and C17–C32 rings, respectively.

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds (Fig. 2 and Table 2), which the H atom attached to N3 is hydrogen-bonded to the neighboring carboxylate oxygen O6.

Related literature top

For related literature, see: Basu Baul et al. (2007); Casella & Guillotti (1983); Ganguly et al. (2008); Parekh et al. (2006); Plesch et al. (1997); Usman et al. (2003); Vigato & Tamburini (2004).

Experimental top

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-valine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to copper(II) acetate monohydrate (1.00 mmol) and imidazole (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2.0 h at 333 K. The dark blue solution was filtered and left for several days, dark blue crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 or 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C), with C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C), and with N—H = 0.86 Å (NH) and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. For clarity, H atoms have been omitted.
[Figure 2] Fig. 2. A view of the crystal packing of (I) along the a axis. Hydrogen bonds are shown as dashed lines.
(Imidazole-κN3){N-[1-(2-oxidophenyl)ethylidene]-L-valinato- κ3O,N,O'}copper(II) top
Crystal data top
[Cu(C13H15NO3)(C3H4N2)]F(000) = 1512
Mr = 364.88Dx = 1.484 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4789 reflections
a = 12.2025 (13) Åθ = 2.3–23.6°
b = 13.5248 (14) ŵ = 1.36 mm1
c = 19.791 (2) ÅT = 296 K
V = 3266.2 (6) Å3Block, dark blue
Z = 80.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5764 independent reflections
Radiation source: fine-focus sealed tube4619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.687, Tmax = 0.773k = 1416
17018 measured reflectionsl = 2321
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.2486P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5764 reflectionsΔρmax = 0.33 e Å3
421 parametersΔρmin = 0.50 e Å3
0 restraintsAbsolute structure: Flack (1983), 2509 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (13)
Crystal data top
[Cu(C13H15NO3)(C3H4N2)]V = 3266.2 (6) Å3
Mr = 364.88Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 12.2025 (13) ŵ = 1.36 mm1
b = 13.5248 (14) ÅT = 296 K
c = 19.791 (2) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5764 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4619 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.773Rint = 0.031
17018 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.33 e Å3
S = 1.03Δρmin = 0.50 e Å3
5764 reflectionsAbsolute structure: Flack (1983), 2509 Freidel pairs
421 parametersAbsolute structure parameter: 0.004 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.52180 (4)0.63527 (4)0.08491 (2)0.04826 (14)
Cu20.65002 (3)0.85812 (4)0.60823 (2)0.04751 (14)
C10.6063 (3)0.6039 (3)0.0474 (2)0.0532 (11)
C20.5832 (4)0.5745 (4)0.1145 (2)0.0655 (13)
H20.51060.56990.12840.079*
C30.6650 (5)0.5528 (4)0.1596 (2)0.0745 (14)
H30.64740.53330.20330.089*
C40.7750 (4)0.5597 (4)0.1401 (3)0.0738 (15)
H40.83100.54480.17030.089*
C50.7979 (4)0.5886 (3)0.0761 (3)0.0624 (12)
H50.87110.59440.06370.075*
C60.7169 (3)0.6106 (3)0.0269 (2)0.0506 (11)
C70.7512 (3)0.6428 (3)0.0404 (2)0.0515 (10)
C80.7081 (3)0.6986 (3)0.1538 (2)0.0490 (10)
H80.78130.67520.16650.059*
C90.6246 (3)0.6621 (3)0.2057 (2)0.0503 (11)
C100.8720 (3)0.6564 (4)0.0537 (2)0.0719 (15)
H10A0.90150.70310.02210.108*
H10B0.90880.59410.04870.108*
H10C0.88240.68050.09890.108*
C110.7088 (4)0.8124 (3)0.1499 (2)0.0636 (13)
H110.75500.82990.11120.076*
C120.5957 (4)0.8557 (4)0.1357 (3)0.0809 (15)
H12A0.54760.84130.17280.121*
H12B0.56670.82700.09510.121*
H12C0.60150.92600.13020.121*
C130.7593 (5)0.8599 (5)0.2100 (3)0.1054 (19)
H13A0.71270.85030.24860.158*
H13B0.76810.92940.20170.158*
H13C0.82960.83060.21850.158*
C140.2976 (3)0.6635 (3)0.1369 (2)0.0558 (12)
H140.32330.68750.17800.067*
C150.1879 (3)0.6175 (3)0.0578 (2)0.0567 (12)
H150.12510.60300.03310.068*
C160.2909 (3)0.6085 (3)0.0364 (2)0.0524 (11)
H160.31200.58630.00610.063*
C170.5693 (3)0.8710 (3)0.47462 (19)0.0457 (9)
C180.5908 (3)0.8916 (3)0.4066 (2)0.0539 (11)
H180.66330.89480.39230.065*
C190.5093 (4)0.9074 (3)0.3601 (2)0.0606 (12)
H190.52690.92130.31540.073*
C200.4009 (4)0.9024 (3)0.3801 (3)0.0625 (13)
H200.34490.91500.34940.075*
C210.3770 (3)0.8788 (3)0.4455 (2)0.0584 (12)
H210.30370.87420.45790.070*
C220.4572 (3)0.8610 (3)0.49521 (18)0.0433 (9)
C230.4247 (3)0.8301 (3)0.5626 (2)0.0444 (10)
C240.4742 (3)0.7757 (3)0.67720 (18)0.0465 (9)
H240.39680.78690.68810.056*
C250.5459 (3)0.8289 (3)0.7284 (2)0.0537 (12)
C260.3039 (3)0.8159 (3)0.5762 (2)0.0554 (11)
H26A0.29350.79650.62250.083*
H26B0.27560.76530.54700.083*
H26C0.26570.87670.56790.083*
C270.4998 (3)0.6645 (3)0.6814 (2)0.0556 (11)
H270.48950.64490.72860.067*
C280.6189 (4)0.6388 (4)0.6627 (2)0.0792 (14)
H28A0.63100.56940.66950.119*
H28B0.66810.67580.69090.119*
H28C0.63190.65520.61620.119*
C290.4234 (4)0.6023 (4)0.6399 (3)0.0898 (18)
H29A0.34910.61610.65270.135*
H29B0.43900.53360.64750.135*
H29C0.43330.61740.59290.135*
C300.8785 (3)0.8880 (3)0.5586 (2)0.0519 (11)
H300.85810.89660.51370.062*
C310.9781 (3)0.8710 (3)0.64947 (17)0.0363 (8)
H311.03700.86540.67910.044*
C320.8746 (3)0.8686 (4)0.6653 (2)0.0588 (11)
H320.84920.86080.70930.071*
N10.6788 (2)0.6579 (2)0.08787 (16)0.0469 (8)
N20.3602 (2)0.6369 (3)0.08634 (15)0.0482 (7)
N30.1914 (2)0.6513 (3)0.12130 (17)0.0559 (9)
H3A0.13620.66300.14710.067*
N40.4983 (2)0.8161 (2)0.60987 (17)0.0437 (7)
N50.8097 (2)0.8782 (2)0.61290 (16)0.0478 (8)
N60.9835 (3)0.8827 (3)0.5834 (3)0.0933 (16)
H61.04260.88650.55990.112*
O10.5208 (2)0.6222 (2)0.00899 (13)0.0623 (8)
O20.52949 (19)0.6399 (2)0.18300 (12)0.0534 (7)
O30.6509 (2)0.6600 (3)0.26604 (14)0.0701 (10)
O40.65434 (19)0.8605 (3)0.51391 (13)0.0631 (8)
O50.6344 (2)0.8681 (3)0.70602 (13)0.0640 (8)
O60.5198 (2)0.8268 (3)0.78876 (14)0.0691 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0364 (2)0.0606 (3)0.0478 (3)0.0005 (3)0.0044 (2)0.0034 (3)
Cu20.0345 (2)0.0625 (3)0.0455 (3)0.0071 (2)0.0017 (2)0.0016 (3)
C10.056 (2)0.056 (3)0.048 (3)0.008 (2)0.010 (2)0.009 (2)
C20.060 (3)0.084 (3)0.053 (3)0.004 (2)0.005 (2)0.008 (3)
C30.099 (4)0.077 (3)0.047 (3)0.001 (3)0.013 (3)0.003 (2)
C40.075 (3)0.075 (4)0.071 (4)0.011 (3)0.028 (3)0.005 (3)
C50.051 (2)0.064 (3)0.072 (3)0.002 (2)0.015 (2)0.007 (3)
C60.045 (2)0.051 (3)0.055 (3)0.0040 (19)0.0146 (19)0.0125 (19)
C70.043 (2)0.051 (3)0.060 (3)0.007 (2)0.0099 (19)0.012 (3)
C80.0331 (19)0.061 (3)0.053 (3)0.0006 (19)0.0002 (18)0.013 (2)
C90.042 (2)0.059 (3)0.050 (3)0.0055 (19)0.0032 (19)0.006 (2)
C100.037 (2)0.109 (4)0.069 (3)0.006 (3)0.015 (2)0.016 (3)
C110.055 (3)0.063 (3)0.072 (3)0.011 (2)0.013 (2)0.003 (2)
C120.079 (3)0.057 (3)0.107 (4)0.008 (3)0.033 (3)0.003 (3)
C130.117 (5)0.098 (4)0.102 (4)0.018 (4)0.044 (4)0.000 (4)
C140.041 (2)0.078 (3)0.049 (2)0.001 (2)0.0043 (19)0.005 (2)
C150.043 (2)0.080 (3)0.047 (2)0.001 (2)0.0065 (19)0.002 (2)
C160.048 (2)0.069 (3)0.040 (2)0.000 (2)0.0019 (19)0.002 (2)
C170.043 (2)0.049 (2)0.046 (2)0.003 (2)0.0036 (18)0.004 (2)
C180.046 (2)0.069 (3)0.046 (3)0.002 (2)0.0026 (19)0.000 (2)
C190.066 (3)0.064 (3)0.051 (3)0.001 (2)0.000 (2)0.004 (2)
C200.056 (3)0.076 (3)0.056 (3)0.000 (2)0.014 (2)0.011 (2)
C210.041 (2)0.071 (3)0.064 (3)0.000 (2)0.006 (2)0.001 (2)
C220.0382 (19)0.048 (2)0.044 (2)0.001 (2)0.0069 (16)0.003 (2)
C230.0374 (19)0.047 (3)0.049 (2)0.0028 (17)0.0002 (18)0.0089 (18)
C240.0325 (18)0.062 (3)0.045 (2)0.0064 (19)0.0031 (18)0.0033 (19)
C250.034 (2)0.076 (3)0.050 (3)0.003 (2)0.0044 (19)0.005 (2)
C260.034 (2)0.077 (3)0.054 (3)0.003 (2)0.0013 (19)0.006 (2)
C270.054 (2)0.065 (3)0.048 (2)0.004 (2)0.0015 (19)0.003 (2)
C280.074 (3)0.082 (3)0.081 (3)0.021 (3)0.018 (3)0.012 (3)
C290.105 (4)0.074 (4)0.091 (4)0.012 (3)0.018 (3)0.003 (3)
C300.041 (2)0.068 (3)0.047 (2)0.009 (2)0.0002 (18)0.006 (2)
C310.0283 (17)0.053 (2)0.0273 (18)0.003 (2)0.0090 (15)0.0052 (19)
C320.052 (2)0.075 (3)0.049 (2)0.013 (3)0.005 (2)0.016 (3)
N10.0393 (17)0.054 (2)0.0472 (19)0.0001 (15)0.0052 (15)0.0091 (17)
N20.0408 (16)0.060 (2)0.0439 (18)0.0004 (18)0.0032 (14)0.001 (2)
N30.0388 (17)0.076 (3)0.053 (2)0.0006 (19)0.0066 (15)0.001 (2)
N40.0353 (16)0.0518 (19)0.0440 (18)0.0038 (14)0.0009 (14)0.0054 (15)
N50.0383 (16)0.060 (2)0.0451 (18)0.0067 (17)0.0001 (15)0.0047 (18)
N60.047 (2)0.083 (3)0.149 (5)0.002 (2)0.002 (3)0.024 (3)
O10.0461 (15)0.095 (2)0.0457 (16)0.0086 (19)0.0045 (13)0.0038 (16)
O20.0373 (13)0.0749 (18)0.0479 (15)0.0075 (18)0.0039 (12)0.0035 (16)
O30.0458 (15)0.115 (3)0.0492 (18)0.0072 (18)0.0004 (14)0.0161 (18)
O40.0356 (13)0.107 (2)0.0465 (16)0.003 (2)0.0004 (12)0.0003 (18)
O50.0450 (15)0.096 (2)0.0507 (17)0.019 (2)0.0016 (13)0.0106 (18)
O60.0445 (15)0.121 (3)0.0417 (18)0.0093 (17)0.0043 (14)0.0130 (16)
Geometric parameters (Å, º) top
Cu1—O11.867 (3)C15—H150.9300
Cu1—N11.941 (3)C16—N21.356 (5)
Cu1—O21.945 (2)C16—H160.9300
Cu1—N21.972 (3)C17—O41.304 (4)
Cu2—O41.868 (3)C17—C181.399 (5)
Cu2—N41.937 (3)C17—C221.433 (5)
Cu2—O51.949 (3)C18—C191.371 (5)
Cu2—N51.969 (3)C18—H180.9300
C1—O11.314 (5)C19—C201.383 (6)
C1—C61.412 (6)C19—H190.9300
C1—C21.415 (6)C20—C211.363 (6)
C2—C31.371 (6)C20—H200.9300
C2—H20.9300C21—C221.409 (5)
C3—C41.399 (7)C21—H210.9300
C3—H30.9300C22—C231.453 (5)
C4—C51.355 (6)C23—N41.311 (5)
C4—H40.9300C23—C261.511 (5)
C5—C61.419 (6)C24—N41.470 (5)
C5—H50.9300C24—C251.520 (5)
C6—C71.464 (6)C24—C271.539 (6)
C7—N11.305 (4)C24—H240.9800
C7—C101.508 (5)C25—O61.236 (5)
C8—N11.461 (5)C25—O51.282 (4)
C8—C91.528 (5)C26—H26A0.9600
C8—C111.541 (6)C26—H26B0.9600
C8—H80.9800C26—H26C0.9600
C9—O31.237 (5)C27—C291.500 (6)
C9—O21.281 (4)C27—C281.539 (6)
C10—H10A0.9600C27—H270.9800
C10—H10B0.9600C28—H28A0.9600
C10—H10C0.9600C28—H28B0.9600
C11—C131.484 (6)C28—H28C0.9600
C11—C121.526 (6)C29—H29A0.9600
C11—H110.9800C29—H29B0.9600
C12—H12A0.9600C29—H29C0.9600
C12—H12B0.9600C30—N51.370 (5)
C12—H12C0.9600C30—N61.375 (5)
C13—H13A0.9600C30—H300.9300
C13—H13B0.9600C31—C321.302 (5)
C13—H13C0.9600C31—N61.319 (5)
C14—N21.310 (5)C31—H310.9300
C14—N31.343 (5)C32—N51.311 (5)
C14—H140.9300C32—H320.9300
C15—C161.332 (5)N3—H3A0.8600
C15—N31.338 (5)N6—H60.8600
O1—Cu1—N192.94 (13)C19—C18—H18118.6
O1—Cu1—O2175.69 (13)C17—C18—H18118.6
N1—Cu1—O285.25 (12)C18—C19—C20119.6 (4)
O1—Cu1—N290.51 (12)C18—C19—H19120.2
N1—Cu1—N2169.97 (14)C20—C19—H19120.2
O2—Cu1—N291.92 (11)C21—C20—C19119.2 (4)
O4—Cu2—N492.79 (13)C21—C20—H20120.4
O4—Cu2—O5173.64 (14)C19—C20—H20120.4
N4—Cu2—O584.85 (12)C20—C21—C22123.7 (4)
O4—Cu2—N590.96 (12)C20—C21—H21118.2
N4—Cu2—N5170.17 (14)C22—C21—H21118.2
O5—Cu2—N592.32 (12)C21—C22—C17116.6 (3)
O1—C1—C6125.5 (4)C21—C22—C23120.1 (3)
O1—C1—C2116.0 (4)C17—C22—C23123.3 (3)
C6—C1—C2118.5 (4)N4—C23—C22120.7 (3)
C3—C2—C1121.8 (5)N4—C23—C26121.5 (4)
C3—C2—H2119.1C22—C23—C26117.8 (3)
C1—C2—H2119.1N4—C24—C25108.3 (3)
C2—C3—C4120.3 (5)N4—C24—C27111.8 (3)
C2—C3—H3119.9C25—C24—C27108.0 (3)
C4—C3—H3119.9N4—C24—H24109.6
C5—C4—C3118.4 (5)C25—C24—H24109.6
C5—C4—H4120.8C27—C24—H24109.6
C3—C4—H4120.8O6—C25—O5124.1 (4)
C4—C5—C6123.9 (5)O6—C25—C24119.0 (4)
C4—C5—H5118.0O5—C25—C24116.7 (4)
C6—C5—H5118.0C23—C26—H26A109.5
C1—C6—C5117.1 (4)C23—C26—H26B109.5
C1—C6—C7123.6 (4)H26A—C26—H26B109.5
C5—C6—C7119.2 (4)C23—C26—H26C109.5
N1—C7—C6120.6 (3)H26A—C26—H26C109.5
N1—C7—C10121.1 (4)H26B—C26—H26C109.5
C6—C7—C10118.3 (3)C29—C27—C28109.2 (4)
N1—C8—C9108.3 (3)C29—C27—C24113.1 (4)
N1—C8—C11109.5 (3)C28—C27—C24113.6 (4)
C9—C8—C11111.1 (4)C29—C27—H27106.8
N1—C8—H8109.3C28—C27—H27106.8
C9—C8—H8109.3C24—C27—H27106.8
C11—C8—H8109.3C27—C28—H28A109.5
O3—C9—O2124.6 (4)C27—C28—H28B109.5
O3—C9—C8118.9 (4)H28A—C28—H28B109.5
O2—C9—C8116.4 (4)C27—C28—H28C109.5
C7—C10—H10A109.5H28A—C28—H28C109.5
C7—C10—H10B109.5H28B—C28—H28C109.5
H10A—C10—H10B109.5C27—C29—H29A109.5
C7—C10—H10C109.5H29A—C29—H29C109.5
H10A—C10—H10C109.5H29B—C29—H29C109.5
H10B—C10—H10C109.5N5—C30—N6106.6 (4)
C13—C11—C12111.0 (4)N5—C30—H30126.7
C13—C11—C8113.2 (4)N6—C30—H30126.7
C12—C11—C8112.8 (4)C32—C31—N6106.9 (3)
C13—C11—H11106.5C32—C31—H31126.6
C12—C11—H11106.5N6—C31—H31126.6
C8—C11—H11106.5C31—C32—N5113.2 (4)
C11—C12—H12A109.5C31—C32—H32123.4
C11—C12—H12B109.5N5—C32—H32123.4
H12A—C12—H12B109.5C7—N1—C8122.4 (3)
C11—C12—H12C109.5C7—N1—Cu1128.4 (3)
H12A—C12—H12C109.5C8—N1—Cu1109.1 (2)
H12B—C12—H12C109.5C14—N2—C16105.8 (3)
C11—C13—H13A109.5C14—N2—Cu1126.6 (3)
C11—C13—H13B109.5C16—N2—Cu1127.6 (3)
H13A—C13—H13B109.5C15—N3—C14106.8 (3)
C11—C13—H13C109.5C15—N3—H3A126.6
H13A—C13—H13C109.5C14—N3—H3A126.6
H13B—C13—H13C109.5C23—N4—C24124.3 (3)
N2—C14—N3110.7 (4)C23—N4—Cu2126.9 (3)
N2—C14—H14124.7C24—N4—Cu2108.4 (2)
N3—C14—H14124.7C32—N5—C30105.1 (3)
C16—C15—N3107.5 (4)C32—N5—Cu2128.4 (3)
C16—C15—H15126.3C30—N5—Cu2125.6 (3)
N3—C15—H15126.3C31—N6—C30108.3 (4)
C15—C16—N2109.3 (4)C31—N6—H6125.9
C15—C16—H16125.3C30—N6—H6125.9
N2—C16—H16125.3C1—O1—Cu1126.0 (3)
O4—C17—C18116.5 (3)C9—O2—Cu1113.6 (2)
O4—C17—C22125.4 (3)C17—O4—Cu2125.1 (2)
C18—C17—C22118.1 (3)C25—O5—Cu2113.4 (2)
C19—C18—C17122.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O6i0.861.912.764 (4)172
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C13H15NO3)(C3H4N2)]
Mr364.88
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)12.2025 (13), 13.5248 (14), 19.791 (2)
V3)3266.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.687, 0.773
No. of measured, independent and
observed [I > 2σ(I)] reflections
17018, 5764, 4619
Rint0.031
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.03
No. of reflections5764
No. of parameters421
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.50
Absolute structureFlack (1983), 2509 Freidel pairs
Absolute structure parameter0.004 (13)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.867 (3)Cu2—O41.868 (3)
Cu1—N11.941 (3)Cu2—N41.937 (3)
Cu1—O21.945 (2)Cu2—O51.949 (3)
Cu1—N21.972 (3)Cu2—N51.969 (3)
O1—Cu1—N192.94 (13)O4—Cu2—N492.79 (13)
O1—Cu1—O2175.69 (13)O4—Cu2—O5173.64 (14)
N1—Cu1—O285.25 (12)N4—Cu2—O584.85 (12)
O1—Cu1—N290.51 (12)O4—Cu2—N590.96 (12)
N1—Cu1—N2169.97 (14)N4—Cu2—N5170.17 (14)
O2—Cu1—N291.92 (11)O5—Cu2—N592.32 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O6i0.861.912.764 (4)172.1
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

This research was supported by the National Science Foundation of China (No. 20676057).

References

First citationBasu Baul, T. S., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259–2266.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGanguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.  Web of Science CrossRef CAS Google Scholar
First citationParekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67–72.  Web of Science CrossRef Google Scholar
First citationPlesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433–440.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1250-m1251
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds