metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1278-m1279

Poly[[di­aqua(μ2-4,4′-di­pyridyl sulfide-κ2N:N′)(4,4′-di­pyridyl sulfide-κN)(2-hy­droxy-5-sulfonatobenzoato-κO1)nickel(II)] dihydrate]

aDepartment of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China
*Correspondence e-mail: dzx6281@126.com

(Received 8 September 2008; accepted 11 September 2008; online 20 September 2008)

The asymmetric unit of the title helical coordination polymer, {[Ni(C7H4O6S)(C10H8N2S)2(H2O)2]·2H2O}n, is comprised of an NiII ion, one 5-sulfosalicylic acid dianion (HSSA), two 4,4′-dipyridylsulfide (4,4′-dps) ligands, and two coordinated and two uncoordinated water mol­ecules. The NiII ion is coordinated by two water mol­ecules, one carboxyl­ate O atom of the HSSA dianion and three N atoms from three 4,4′-dps ligands in a distorted octa­hedral environment. Half of the 4,4′-dps ligands are μ2-bridging ligands which link adjacent NiII centers, forming a one-dimensional helical structure along the b axis. This helical structure is further stabilized by O—H⋯O intra- and inter­molecular hydrogen bonds.

Related literature

For related structures, see: Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]); Hao & Zhang (2007[Hao, Z. M. & Zhang, X. M. (2007). Cryst. Growth Des. 7, 64-68.]); Hou et al. (2001[Hou, H. W., Song, Y. L., Fan, Y. T., Zhang, L. P., Du, C. X. & Zhu, Y. (2001). Inorg. Chim. Acta, 316, 140-144.]); Jung et al. (1999[Jung, O. S., Sung, H. P., Chul, H. P. & Jong, K. P. (1999). Chem. Lett. pp. 923-924.], 2000[Jung, O. S., Park, S. H., Lee, Y. A. & Lee, U. (2000). Chem. Lett. pp. 1012-1013.]); Niu et al. (2006[Niu, Y. Y., Li, Z. J., Song, Y. L., Tanga, M. S., Wu, B. L. & Xin, X. Q. (2006). J. Solid State Chem. 179, 4003-4010.]); Vaganova et al. (2004[Vaganova, E., Wachtel, E., Rozenberg, H., Khodorkovsky, V., Leitus, G., Shimon, L., Reich, S. & Yitzchaik, S. (2004). Chem. Mater. 16, 3976-3979.]); Wen et al. (2004[Wen, Y.-H., Cheng, J.-K., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m618-m619.]); Zeng et al. (2006[Zeng, Q. D., Wu, D. X., Ma, H. W., Shu, C. Y., Li, Y. & Wang, C. (2006). CrystEngComm, 8, 189-201.]); Zheng & Vittal (2001[Zheng, N. & Vittal, J. J. (2001). Cryst. Growth Des. 1, 195-197.]); Zheng et al. (1999[Zheng, L. M., Fang, X., Li, K. H., Song, H. H., Xin, X. Q., Fun, H. K., Chinnakali, K. & Razak, I. A. (1999). J. Chem. Soc. Dalton Trans. pp. 2311-2316.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H4O6S)(C10H8N2S)2(H2O)2]·2H2O

  • Mr = 723.42

  • Monoclinic, P 21 /n

  • a = 11.4649 (10) Å

  • b = 13.9441 (12) Å

  • c = 20.7051 (18) Å

  • β = 96.5520 (10)°

  • V = 3288.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 291 (2) K

  • 0.44 × 0.26 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.709, Tmax = 0.866

  • 23823 measured reflections

  • 6054 independent reflections

  • 4328 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.178

  • S = 1.02

  • 6054 reflections

  • 426 parameters

  • 219 restraints

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O9 1.981 (3)
Ni1—N4i 2.040 (3)
Ni1—N1 2.041 (4)
Ni1—N3 2.055 (4)
Ni1—O2 2.430 (3)
Ni1—O5 2.437 (3)
O9—Ni1—N4i 173.60 (14)
O9—Ni1—N1 88.00 (13)
O9—Ni1—N3 87.87 (13)
N1—Ni1—N3 175.23 (14)
O9—Ni1—O2 92.99 (12)
N1—Ni1—O2 87.06 (14)
O9—Ni1—O5 80.75 (12)
N1—Ni1—O5 93.08 (14)
O2—Ni1—O5 173.73 (12)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O10 0.82 1.84 2.535 (5) 142
O5—H10W⋯O3ii 0.83 1.98 2.797 (5) 170
O5—H9W⋯O4iii 0.85 2.04 2.721 (8) 136
O4—H7W⋯O8iv 0.83 2.30 2.713 (9) 112
O3—H6W⋯O6v 0.83 2.10 2.811 (7) 143
O3—H5W⋯O6vi 0.83 2.24 2.765 (8) 122
O2—H4W⋯O10 0.83 1.95 2.690 (5) 149
O2—H3W⋯O7v 0.84 1.87 2.652 (7) 155
O1—H1W⋯O11vii 0.85 2.03 2.876 (7) 180
Symmetry codes: (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z; (iv) x-1, y+1, z; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the use of bipyridyl based bridging ligands and transition metal centers in the preparation of various coordination compounds have attracted considerable interests not only because of their structural novelty but also for their potential properties in magnetism (Zheng et al., 1999), nonlinear optics (Hou et al., 2001), catalysts (Fujita et al., 1994) and so on. 4,4'-dps possesses a magic angle (the angle of C—S—C almost equals to 100°) and conformational nonrigidity so it has some flexibility in contrast to linear rigid ligands such as simple 4,4'-bipyridine analogues. A number of metal complexes derived from 4,4'-dps have been reported previously. Among them, the 4,4'-dps has three kind of coordination modes and they are non-coordinate (Zeng et al., 2006; Wen et al., 2004; Vaganova et al., 2004),µ2-bridging (Zheng & Vittal, 2001; Jung et al., 2000; Hao & Zhang, 2007; Niu et al., 2006), µ2 and µ3 together (Jung et al., 1999). In this paper, we describe another new compound in which the 4,4'-dps is monodentate and µ2-bridging together, (I), (Fig. 1).

Complex (I) is composed of [Ni(C10H8N2S)2)(C7H4O6S)(H2O)2].2H2O units, in which the NiII ion is six-coordinated in a distorted octahedral geometry (Table 1) formed by two coordinate water molecules, one carboxylate O atom of HSSA dianion, one N atoms from monodentate 4,4'-dps ligand and another two N atoms from another two µ2-bridging 4,4'-dps ligands. Half of the 4,4'-dps are monodentate and the other half are µ2-bridging. It is just through the µ2-bridging function that the adjacent NiII centers are joined to form a one-dimensional helix structure (Fig. 2, 3 & 4) along b axis in the monoclinic unit cell, with the Ni···Ni(1/2 - x, 1/2 + y, 3/2 - z) distance of 10.6096 (10) Å. The phenolic hydroxyl and carboxyl of HSSA dianion are involved in intramolecular hydrogen bonding (Table 2). Together with the other O—H···O intermolecular hydrogen bonds with participation of water molecules, the helix structure are further stabilized.

Related literature top

For related literature, see: Fujita et al. (1994); Hao & Zhang (2007); Hou et al. (2001); Jung et al. (1999, 2000); Niu et al. (2006); Vaganova et al. (2004); Wen et al. (2004); Zeng et al. (2006); Zheng & Vittal (2001); Zheng et al. (1999). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

The ligand 4,4'-dps (0.5 mmol, 0.14 g), 5-sulfosalicylic acid (0.5 mmol, 0.13 g) and NaOH (1.0 mmol, 0.04 g) were dissolved in water and methanol mixed solvent (30 ml, v/v 1:1). To this solution, Ni(CH3COO)2.4H2O (0.5 mmol, 0.13 g) was added and the resulting mixture was stirred and refluxed at 353 K for 2.5 h, then cooled to room temperature. After filtration and evaporation in air for 3 days, green block-shaped crystals were obtained in a yield of 32%. Analysis, found (%): C, 44.83; H 3.84, N 7.79, S13.22. C27H28N4NiO10S3 requires (%): C 44.78, H 3.87, N 7.74, S 13.27. [CCDC number 656224].

Refinement top

H atoms bonded to C atoms were positioned geometrically with C—H distance of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq. H atoms bonded to O atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of NiII ion in (I), with displacement ellipsoids shown at the 30% probability level. Uncoordinate water molecules and H atoms have been omitted [Symmetry codes: (A) 1/2 - x, 1/2 + y, 3/2 - z; (B) 1/2 - x, -1/2 + y, 3/2 - z].
[Figure 2] Fig. 2. The helix structure for (I) along b axis. Uncoordinate water molecules and H atoms on C atoms have been omitted.
[Figure 3] Fig. 3. The helix structure for (I) along b axis with a helix axis. Uncoordinate water molecules and H atoms have been omitted.
[Figure 4] Fig. 4. The space filled diagram of the helix structure for (I) along b axis. Uncoordinate water molecules and H atoms have been omitted.
Poly[[diaqua(µ2-4,4'-dipyridyl sulfide-κ2N:N')(4,4'-dipyridyl sulfide-κN)(2-hydroxy-5-sulfonatobenzoato-κO1)nickel(II)] dihydrate] top
Crystal data top
[Ni(C7H4O6S)(C10H8N2S)2(H2O)2]·2H2OF(000) = 1496
Mr = 723.42Dx = 1.461 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4865 reflections
a = 11.4649 (10) Åθ = 2.3–21.6°
b = 13.9441 (12) ŵ = 0.84 mm1
c = 20.7051 (18) ÅT = 291 K
β = 96.552 (1)°Block, green
V = 3288.5 (5) Å30.44 × 0.26 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6054 independent reflections
Radiation source: fine-focus sealed tube4328 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.709, Tmax = 0.866k = 1616
23823 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0999P)2 + 2.6202P]
where P = (Fo2 + 2Fc2)/3
6054 reflections(Δ/σ)max = 0.001
426 parametersΔρmax = 0.96 e Å3
219 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ni(C7H4O6S)(C10H8N2S)2(H2O)2]·2H2OV = 3288.5 (5) Å3
Mr = 723.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4649 (10) ŵ = 0.84 mm1
b = 13.9441 (12) ÅT = 291 K
c = 20.7051 (18) Å0.44 × 0.26 × 0.18 mm
β = 96.552 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6054 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4328 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.866Rint = 0.037
23823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058219 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.03Δρmax = 0.96 e Å3
6054 reflectionsΔρmin = 0.58 e Å3
426 parameters
Special details top

Experimental. The sulfonic group of HSSA dianion is in disorder and has been refined but not satisfactory.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S31.11886 (11)0.14488 (10)0.89754 (7)0.0681 (4)0.622 (5)
O61.0657 (6)0.0994 (5)0.9516 (3)0.0971 (16)0.622 (5)
O71.0712 (6)0.2372 (4)0.8826 (3)0.0973 (17)0.622 (5)
O81.2456 (4)0.1450 (6)0.9124 (4)0.1026 (19)0.622 (5)
S3'1.11886 (11)0.14488 (10)0.89754 (7)0.0681 (4)0.378 (5)
O6'1.0085 (7)0.1624 (8)0.9241 (5)0.0971 (16)0.378 (5)
O7'1.1545 (9)0.2352 (6)0.8675 (5)0.0973 (17)0.378 (5)
O8'1.2068 (8)0.1005 (8)0.9383 (6)0.1026 (19)0.378 (5)
Ni10.59573 (4)0.10463 (4)0.80537 (3)0.04492 (19)
S10.86708 (13)0.45268 (11)0.97477 (9)0.0867 (5)
S20.42135 (12)0.26440 (11)0.61663 (7)0.0762 (4)
O10.2056 (7)0.1245 (5)0.6004 (4)0.081 (2)0.50
H1W0.14510.11760.62020.122*0.50
H2W0.23950.15430.62980.122*0.50
O20.5916 (3)0.2119 (3)0.71261 (17)0.0762 (10)
H3W0.55350.24260.68270.114*
H4W0.66150.20790.70650.114*
O30.6648 (4)0.4534 (3)0.5299 (2)0.0938 (12)
H5W0.63670.45930.49120.141*
H6W0.61160.43990.55280.141*
O40.4748 (7)0.8801 (5)0.9582 (4)0.084 (2)0.50
H7W0.42230.85580.97710.127*0.50
H8W0.46460.85930.91780.127*0.50
O50.6211 (3)0.0084 (3)0.89567 (18)0.0763 (10)
H9W0.58330.06060.89750.114*
H10W0.68400.02610.91560.114*
O90.7577 (2)0.0611 (2)0.79683 (15)0.0566 (7)
O100.8024 (3)0.1301 (3)0.70624 (19)0.0765 (10)
O111.0017 (3)0.1011 (3)0.6679 (2)0.0915 (13)
H110.93110.11250.66210.137*
N10.6667 (3)0.2157 (3)0.86085 (17)0.0531 (9)
N20.6301 (7)0.7173 (4)0.9694 (4)0.119 (2)
N30.5365 (3)0.0069 (3)0.74554 (18)0.0545 (9)
N40.0690 (3)0.3576 (3)0.67586 (18)0.0512 (8)
C10.7555 (4)0.1994 (3)0.9076 (2)0.0577 (11)
H10.77930.13630.91590.069*
C20.8125 (4)0.2702 (4)0.9436 (2)0.0609 (12)
H20.87340.25530.97560.073*
C30.7792 (4)0.3647 (3)0.9322 (2)0.0591 (11)
C40.6873 (5)0.3829 (4)0.8847 (3)0.0680 (13)
H40.66150.44540.87600.082*
C50.6349 (4)0.3076 (3)0.8506 (2)0.0628 (12)
H50.57360.32080.81840.075*
C60.7725 (5)0.5558 (4)0.9719 (3)0.0777 (15)
C70.8082 (7)0.6385 (5)0.9465 (3)0.097 (2)
H70.88030.64260.93020.116*
C80.7340 (9)0.7170 (5)0.9456 (4)0.113 (2)
H80.75790.77350.92720.135*
C90.5986 (7)0.6361 (6)0.9958 (4)0.115 (2)
H90.52720.63431.01300.138*
C100.6680 (6)0.5523 (5)0.9989 (4)0.0945 (19)
H100.64420.49671.01850.113*
C110.4525 (4)0.0005 (4)0.6954 (2)0.0617 (12)
H11A0.41780.06000.68660.074*
C120.4151 (4)0.0753 (4)0.6564 (2)0.0647 (12)
H120.35600.06640.62220.078*
C130.4639 (4)0.1637 (3)0.6674 (2)0.0592 (11)
C140.5518 (5)0.1722 (4)0.7173 (3)0.0743 (14)
H140.58840.23110.72580.089*
C150.5863 (5)0.0938 (4)0.7548 (3)0.0733 (14)
H150.64710.10120.78820.088*
C160.2851 (4)0.2967 (3)0.6419 (2)0.0548 (10)
C170.2466 (4)0.2696 (4)0.7005 (2)0.0635 (12)
H170.29280.23050.72950.076*
C180.1396 (4)0.3014 (4)0.7149 (2)0.0614 (12)
H180.11480.28270.75420.074*
C190.1080 (4)0.3847 (4)0.6199 (2)0.0628 (12)
H190.06100.42490.59210.075*
C200.2136 (4)0.3559 (4)0.6018 (2)0.0645 (12)
H200.23690.37630.56250.077*
C210.8262 (4)0.0772 (3)0.7551 (2)0.0487 (10)
C220.9428 (4)0.0302 (3)0.7648 (2)0.0500 (10)
C230.9732 (4)0.0280 (3)0.8182 (2)0.0520 (10)
H230.91850.03950.84710.062*
C241.0833 (4)0.0692 (3)0.8294 (2)0.0558 (11)
C251.1637 (4)0.0526 (4)0.7859 (3)0.0692 (13)
H251.23820.07950.79340.083*
C261.1358 (4)0.0022 (4)0.7325 (3)0.0786 (16)
H261.19070.01150.70330.094*
C271.0251 (4)0.0452 (4)0.7209 (2)0.0638 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S30.0600 (7)0.0674 (8)0.0720 (8)0.0162 (6)0.0135 (6)0.0046 (6)
O60.097 (3)0.101 (4)0.091 (3)0.027 (3)0.001 (3)0.014 (3)
O70.114 (4)0.080 (3)0.090 (3)0.011 (3)0.024 (3)0.010 (2)
O80.074 (3)0.118 (4)0.108 (4)0.007 (3)0.026 (3)0.012 (3)
S3'0.0600 (7)0.0674 (8)0.0720 (8)0.0162 (6)0.0135 (6)0.0046 (6)
O6'0.097 (3)0.101 (4)0.091 (3)0.027 (3)0.001 (3)0.014 (3)
O7'0.114 (4)0.080 (3)0.090 (3)0.011 (3)0.024 (3)0.010 (2)
O8'0.074 (3)0.118 (4)0.108 (4)0.007 (3)0.026 (3)0.012 (3)
Ni10.0342 (3)0.0437 (3)0.0563 (3)0.0050 (2)0.0026 (2)0.0027 (2)
S10.0655 (8)0.0828 (10)0.1068 (12)0.0091 (7)0.0121 (8)0.0239 (8)
S20.0628 (8)0.0861 (9)0.0849 (9)0.0234 (7)0.0313 (7)0.0296 (7)
O10.090 (5)0.062 (4)0.103 (5)0.020 (3)0.061 (4)0.011 (3)
O20.068 (2)0.088 (2)0.073 (2)0.0191 (18)0.0125 (17)0.0177 (19)
O30.081 (3)0.122 (3)0.076 (2)0.007 (2)0.003 (2)0.007 (2)
O40.069 (4)0.059 (4)0.127 (6)0.001 (3)0.020 (4)0.031 (4)
O50.067 (2)0.072 (2)0.088 (2)0.0028 (17)0.0020 (18)0.0209 (19)
O90.0428 (16)0.0611 (18)0.0661 (19)0.0083 (14)0.0075 (14)0.0037 (15)
O100.059 (2)0.089 (2)0.082 (2)0.0182 (18)0.0104 (17)0.026 (2)
O110.068 (2)0.119 (3)0.092 (3)0.016 (2)0.027 (2)0.039 (2)
N10.0474 (19)0.053 (2)0.058 (2)0.0062 (16)0.0000 (16)0.0026 (16)
N20.142 (6)0.066 (4)0.140 (6)0.004 (4)0.027 (5)0.021 (4)
N30.0425 (18)0.057 (2)0.063 (2)0.0050 (16)0.0035 (16)0.0009 (18)
N40.0455 (19)0.051 (2)0.057 (2)0.0061 (16)0.0047 (16)0.0015 (17)
C10.054 (3)0.053 (3)0.064 (3)0.006 (2)0.003 (2)0.008 (2)
C20.054 (3)0.069 (3)0.057 (3)0.004 (2)0.005 (2)0.007 (2)
C30.056 (3)0.061 (3)0.059 (3)0.004 (2)0.004 (2)0.009 (2)
C40.071 (3)0.055 (3)0.073 (3)0.006 (2)0.014 (3)0.001 (2)
C50.058 (3)0.057 (3)0.069 (3)0.012 (2)0.014 (2)0.001 (2)
C60.081 (4)0.072 (4)0.075 (3)0.015 (3)0.014 (3)0.017 (3)
C70.125 (6)0.084 (4)0.079 (4)0.019 (4)0.001 (4)0.005 (3)
C80.148 (8)0.073 (5)0.111 (6)0.006 (5)0.012 (5)0.001 (4)
C90.109 (6)0.098 (6)0.135 (7)0.002 (5)0.002 (5)0.027 (5)
C100.085 (4)0.072 (4)0.124 (5)0.005 (3)0.001 (4)0.014 (4)
C110.050 (2)0.064 (3)0.071 (3)0.008 (2)0.002 (2)0.001 (2)
C120.055 (3)0.073 (3)0.064 (3)0.006 (2)0.000 (2)0.005 (2)
C130.047 (2)0.062 (3)0.071 (3)0.010 (2)0.015 (2)0.009 (2)
C140.081 (4)0.051 (3)0.088 (4)0.002 (2)0.003 (3)0.006 (3)
C150.074 (3)0.061 (3)0.079 (3)0.013 (3)0.018 (3)0.002 (3)
C160.049 (2)0.059 (3)0.057 (3)0.003 (2)0.0089 (19)0.002 (2)
C170.052 (3)0.074 (3)0.066 (3)0.020 (2)0.012 (2)0.024 (2)
C180.056 (3)0.071 (3)0.059 (3)0.013 (2)0.013 (2)0.012 (2)
C190.060 (3)0.067 (3)0.061 (3)0.015 (2)0.006 (2)0.011 (2)
C200.067 (3)0.072 (3)0.057 (3)0.017 (2)0.016 (2)0.015 (2)
C210.044 (2)0.045 (2)0.056 (2)0.0004 (17)0.0016 (19)0.0009 (19)
C220.041 (2)0.047 (2)0.062 (3)0.0018 (17)0.0029 (19)0.008 (2)
C230.047 (2)0.050 (2)0.057 (2)0.0039 (18)0.0016 (19)0.004 (2)
C240.044 (2)0.051 (2)0.070 (3)0.0082 (19)0.003 (2)0.010 (2)
C250.048 (3)0.069 (3)0.090 (4)0.013 (2)0.005 (3)0.007 (3)
C260.051 (3)0.097 (4)0.091 (4)0.017 (3)0.023 (3)0.006 (3)
C270.051 (3)0.075 (3)0.066 (3)0.000 (2)0.007 (2)0.008 (2)
Geometric parameters (Å, º) top
S3—O71.418 (5)C2—H20.9300
S3—O81.450 (5)C3—C41.381 (7)
S3—O61.477 (5)C4—C51.365 (7)
S3—C241.771 (5)C4—H40.9300
Ni1—O91.981 (3)C5—H50.9300
Ni1—N4i2.040 (3)C6—C71.349 (8)
Ni1—N12.041 (4)C6—C101.379 (9)
Ni1—N32.055 (4)C7—C81.385 (11)
Ni1—O22.430 (3)C7—H70.9300
Ni1—O52.437 (3)C8—H80.9300
S1—C31.759 (5)C9—C101.411 (9)
S1—C61.798 (6)C9—H90.9300
S2—C161.762 (4)C10—H100.9300
S2—C131.789 (5)C11—C121.369 (7)
O1—H1W0.8504C11—H11A0.9300
O1—H2W0.8000C12—C131.362 (7)
O2—H3W0.8350C12—H120.9300
O2—H4W0.8278C13—C141.363 (7)
O3—H5W0.8338C14—C151.373 (7)
O3—H6W0.8347C14—H140.9300
O4—H7W0.8256C15—H150.9300
O4—H8W0.8821C16—C201.375 (6)
O5—H9W0.8501C16—C171.390 (6)
O5—H10W0.8267C17—C181.369 (6)
O9—C211.252 (5)C17—H170.9300
O10—C211.256 (5)C18—H180.9300
O11—C271.348 (6)C19—C201.367 (7)
O11—H110.8200C19—H190.9300
N1—C11.342 (5)C20—H200.9300
N1—C51.343 (6)C21—C221.482 (6)
N2—C91.324 (10)C22—C231.384 (6)
N2—C81.340 (11)C22—C271.397 (6)
N3—C111.337 (6)C23—C241.382 (6)
N3—C151.344 (6)C23—H230.9300
N4—C181.332 (6)C24—C251.380 (7)
N4—C191.344 (6)C25—C261.352 (8)
N4—Ni1ii2.040 (3)C25—H250.9300
C1—C21.358 (6)C26—C271.399 (7)
C1—H10.9300C26—H260.9300
C2—C31.385 (7)
O7—S3—O8113.4 (4)C6—C7—H7121.1
O7—S3—O6111.9 (4)C8—C7—H7121.1
O8—S3—O6109.2 (4)N2—C8—C7124.5 (8)
O7—S3—C24108.6 (3)N2—C8—H8117.7
O8—S3—C24107.7 (4)C7—C8—H8117.7
O6—S3—C24105.7 (3)N2—C9—C10123.2 (8)
O9—Ni1—N4i173.60 (14)N2—C9—H9118.4
O9—Ni1—N188.00 (13)C10—C9—H9118.4
N4i—Ni1—N190.87 (14)C6—C10—C9117.6 (7)
O9—Ni1—N387.87 (13)C6—C10—H10121.2
N4i—Ni1—N393.50 (14)C9—C10—H10121.2
N1—Ni1—N3175.23 (14)N3—C11—C12123.3 (5)
O9—Ni1—O292.99 (12)N3—C11—H11A118.4
N4i—Ni1—O293.24 (13)C12—C11—H11A118.4
N1—Ni1—O287.06 (14)C13—C12—C11120.3 (5)
N3—Ni1—O290.79 (14)C13—C12—H12119.9
O9—Ni1—O580.75 (12)C11—C12—H12119.9
N4i—Ni1—O593.03 (13)C12—C13—C14117.4 (4)
N1—Ni1—O593.08 (14)C12—C13—S2122.2 (4)
N3—Ni1—O588.60 (14)C14—C13—S2120.3 (4)
O2—Ni1—O5173.73 (12)C13—C14—C15120.0 (5)
C3—S1—C6103.4 (2)C13—C14—H14120.0
C16—S2—C13102.6 (2)C15—C14—H14120.0
H1W—O1—H2W92.5N3—C15—C14123.1 (5)
Ni1—O2—H3W149.8N3—C15—H15118.4
Ni1—O2—H4W98.5C14—C15—H15118.4
H3W—O2—H4W110.7C20—C16—C17117.7 (4)
H5W—O3—H6W109.9C20—C16—S2117.5 (3)
H7W—O4—H8W106.8C17—C16—S2124.8 (3)
Ni1—O5—H9W124.9C18—C17—C16118.9 (4)
Ni1—O5—H10W126.7C18—C17—H17120.6
H9W—O5—H10W98.2C16—C17—H17120.6
C21—O9—Ni1132.4 (3)N4—C18—C17123.8 (4)
C27—O11—H11109.5N4—C18—H18118.1
C1—N1—C5116.5 (4)C17—C18—H18118.1
C1—N1—Ni1119.9 (3)N4—C19—C20123.1 (4)
C5—N1—Ni1123.5 (3)N4—C19—H19118.5
C9—N2—C8116.5 (7)C20—C19—H19118.5
C11—N3—C15115.9 (4)C19—C20—C16119.7 (4)
C11—N3—Ni1124.7 (3)C19—C20—H20120.1
C15—N3—Ni1119.4 (3)C16—C20—H20120.1
C18—N4—C19116.7 (4)O9—C21—O10124.4 (4)
C18—N4—Ni1ii123.2 (3)O9—C21—C22117.0 (4)
C19—N4—Ni1ii119.9 (3)O10—C21—C22118.6 (4)
N1—C1—C2123.3 (4)C23—C22—C27118.7 (4)
N1—C1—H1118.3C23—C22—C21120.5 (4)
C2—C1—H1118.3C27—C22—C21120.8 (4)
C1—C2—C3119.6 (4)C24—C23—C22121.3 (4)
C1—C2—H2120.2C24—C23—H23119.3
C3—C2—H2120.2C22—C23—H23119.3
C4—C3—C2118.0 (4)C25—C24—C23119.0 (5)
C4—C3—S1125.2 (4)C25—C24—S3120.6 (3)
C2—C3—S1116.6 (4)C23—C24—S3120.3 (4)
C5—C4—C3118.8 (4)C26—C25—C24121.0 (4)
C5—C4—H4120.6C26—C25—H25119.5
C3—C4—H4120.6C24—C25—H25119.5
N1—C5—C4123.9 (4)C25—C26—C27120.5 (5)
N1—C5—H5118.1C25—C26—H26119.8
C4—C5—H5118.1C27—C26—H26119.8
C7—C6—C10120.3 (7)O11—C27—C22121.9 (4)
C7—C6—S1119.2 (6)O11—C27—C26118.7 (5)
C10—C6—S1120.4 (5)C22—C27—C26119.4 (5)
C6—C7—C8117.9 (8)
N4i—Ni1—O9—C21172.7 (11)Ni1—N3—C11—C12180.0 (4)
N1—Ni1—O9—C2192.8 (4)N3—C11—C12—C130.3 (8)
N3—Ni1—O9—C2184.9 (4)C11—C12—C13—C141.4 (7)
O2—Ni1—O9—C215.8 (4)C11—C12—C13—S2178.2 (4)
O5—Ni1—O9—C21173.8 (4)C16—S2—C13—C1276.2 (4)
O9—Ni1—N1—C145.1 (3)C16—S2—C13—C14107.0 (4)
N4i—Ni1—N1—C1128.6 (4)C12—C13—C14—C151.2 (8)
N3—Ni1—N1—C174.9 (18)S2—C13—C14—C15178.0 (4)
O2—Ni1—N1—C1138.2 (3)C11—N3—C15—C142.3 (8)
O5—Ni1—N1—C135.6 (4)Ni1—N3—C15—C14179.7 (5)
O9—Ni1—N1—C5130.2 (4)C13—C14—C15—N30.7 (9)
N4i—Ni1—N1—C556.1 (4)C13—S2—C16—C20163.6 (4)
N3—Ni1—N1—C5100.3 (17)C13—S2—C16—C1718.9 (5)
O2—Ni1—N1—C537.1 (4)C20—C16—C17—C181.1 (8)
O5—Ni1—N1—C5149.2 (4)S2—C16—C17—C18178.6 (4)
O9—Ni1—N3—C11134.4 (4)C19—N4—C18—C171.0 (7)
N4i—Ni1—N3—C1151.8 (4)Ni1ii—N4—C18—C17174.8 (4)
N1—Ni1—N3—C11104.5 (17)C16—C17—C18—N40.1 (8)
O2—Ni1—N3—C1141.5 (4)C18—N4—C19—C201.1 (7)
O5—Ni1—N3—C11144.8 (4)Ni1ii—N4—C19—C20174.8 (4)
O9—Ni1—N3—C1543.4 (4)N4—C19—C20—C160.2 (8)
N4i—Ni1—N3—C15130.3 (4)C17—C16—C20—C190.9 (8)
N1—Ni1—N3—C1573.3 (18)S2—C16—C20—C19178.6 (4)
O2—Ni1—N3—C15136.4 (4)Ni1—O9—C21—O100.8 (7)
O5—Ni1—N3—C1537.4 (4)Ni1—O9—C21—C22179.4 (3)
C5—N1—C1—C20.1 (7)O9—C21—C22—C230.4 (6)
Ni1—N1—C1—C2175.4 (4)O10—C21—C22—C23179.4 (4)
N1—C1—C2—C30.3 (8)O9—C21—C22—C27179.2 (4)
C1—C2—C3—C40.8 (7)O10—C21—C22—C270.6 (6)
C1—C2—C3—S1173.6 (4)C27—C22—C23—C241.5 (6)
C6—S1—C3—C426.3 (5)C21—C22—C23—C24177.4 (4)
C6—S1—C3—C2159.8 (4)C22—C23—C24—C250.7 (7)
C2—C3—C4—C51.0 (8)C22—C23—C24—S3179.0 (3)
S1—C3—C4—C5172.8 (4)O7—S3—C24—C2598.3 (5)
C1—N1—C5—C40.1 (8)O8—S3—C24—C2524.9 (5)
Ni1—N1—C5—C4175.5 (4)O6—S3—C24—C25141.5 (5)
C3—C4—C5—N10.7 (8)O7—S3—C24—C2380.1 (5)
C3—S1—C6—C7123.6 (5)O8—S3—C24—C23156.8 (5)
C3—S1—C6—C1060.5 (5)O6—S3—C24—C2340.1 (5)
C10—C6—C7—C83.4 (9)C23—C24—C25—C260.8 (7)
S1—C6—C7—C8179.3 (5)S3—C24—C25—C26177.6 (4)
C9—N2—C8—C70.4 (12)C24—C25—C26—C271.4 (9)
C6—C7—C8—N21.5 (11)C23—C22—C27—O11179.9 (5)
C8—N2—C9—C100.5 (12)C21—C22—C27—O111.0 (7)
C7—C6—C10—C93.3 (9)C23—C22—C27—C260.8 (7)
S1—C6—C10—C9179.2 (5)C21—C22—C27—C26178.0 (5)
N2—C9—C10—C61.3 (11)C25—C26—C27—O11178.5 (5)
C15—N3—C11—C122.1 (7)C25—C26—C27—C220.6 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O100.821.842.535 (5)142
O5—H10W···O3iii0.831.982.797 (5)170
O5—H9W···O4iv0.852.042.721 (8)136
O4—H7W···O8v0.832.302.713 (9)112
O3—H6W···O6vi0.832.102.811 (7)143
O3—H5W···O6vii0.832.242.765 (8)122
O2—H4W···O100.831.952.690 (5)149
O2—H3W···O7vi0.841.872.652 (7)155
O1—H1W···O11viii0.852.032.876 (7)180
Symmetry codes: (iii) x+3/2, y1/2, z+3/2; (iv) x, y1, z; (v) x1, y+1, z; (vi) x+3/2, y+1/2, z+3/2; (vii) x1/2, y+1/2, z1/2; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C7H4O6S)(C10H8N2S)2(H2O)2]·2H2O
Mr723.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)11.4649 (10), 13.9441 (12), 20.7051 (18)
β (°) 96.552 (1)
V3)3288.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.44 × 0.26 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.709, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
23823, 6054, 4328
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.178, 1.03
No. of reflections6054
No. of parameters426
No. of restraints219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.58

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O91.981 (3)Ni1—N32.055 (4)
Ni1—N4i2.040 (3)Ni1—O22.430 (3)
Ni1—N12.041 (4)Ni1—O52.437 (3)
O9—Ni1—N4i173.60 (14)N1—Ni1—O287.06 (14)
O9—Ni1—N188.00 (13)O9—Ni1—O580.75 (12)
O9—Ni1—N387.87 (13)N1—Ni1—O593.08 (14)
N1—Ni1—N3175.23 (14)O2—Ni1—O5173.73 (12)
O9—Ni1—O292.99 (12)
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O100.821.842.535 (5)141.9
O5—H10W···O3ii0.831.982.797 (5)170.3
O5—H9W···O4iii0.852.042.721 (8)136.4
O4—H7W···O8iv0.832.302.713 (9)111.6
O3—H6W···O6v0.832.102.811 (7)143.3
O3—H5W···O6vi0.832.242.765 (8)121.5
O2—H4W···O100.831.952.690 (5)148.9
O2—H3W···O7v0.841.872.652 (7)154.7
O1—H1W···O11vii0.852.032.876 (7)179.7
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x, y1, z; (iv) x1, y+1, z; (v) x+3/2, y+1/2, z+3/2; (vi) x1/2, y+1/2, z1/2; (vii) x1, y, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan Province (No. 0311021200).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationHao, Z. M. & Zhang, X. M. (2007). Cryst. Growth Des. 7, 64–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationHou, H. W., Song, Y. L., Fan, Y. T., Zhang, L. P., Du, C. X. & Zhu, Y. (2001). Inorg. Chim. Acta, 316, 140–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationJung, O. S., Park, S. H., Lee, Y. A. & Lee, U. (2000). Chem. Lett. pp. 1012–1013.  Web of Science CSD CrossRef Google Scholar
First citationJung, O. S., Sung, H. P., Chul, H. P. & Jong, K. P. (1999). Chem. Lett. pp. 923-924.  CSD CrossRef Google Scholar
First citationNiu, Y. Y., Li, Z. J., Song, Y. L., Tanga, M. S., Wu, B. L. & Xin, X. Q. (2006). J. Solid State Chem. 179, 4003–4010.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaganova, E., Wachtel, E., Rozenberg, H., Khodorkovsky, V., Leitus, G., Shimon, L., Reich, S. & Yitzchaik, S. (2004). Chem. Mater. 16, 3976–3979.  Web of Science CSD CrossRef CAS Google Scholar
First citationWen, Y.-H., Cheng, J.-K., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m618–m619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZeng, Q. D., Wu, D. X., Ma, H. W., Shu, C. Y., Li, Y. & Wang, C. (2006). CrystEngComm, 8, 189–201.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, L. M., Fang, X., Li, K. H., Song, H. H., Xin, X. Q., Fun, H. K., Chinnakali, K. & Razak, I. A. (1999). J. Chem. Soc. Dalton Trans. pp. 2311–2316.  Web of Science CSD CrossRef Google Scholar
First citationZheng, N. & Vittal, J. J. (2001). Cryst. Growth Des. 1, 195–197.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1278-m1279
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds