organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2-chloro­phen­yl)benzamide

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 19 August 2008; accepted 9 September 2008; online 13 September 2008)

In the mol­ecular structure of the title compound, C13H9Cl2NO, the amide N—C=O plane makes dihedral angles of 31.53 (8) and 36.23 (8)°, respectively, with the 4-chloro- and 2-chloro­phenyl rings. The dihedral angle between the two benzene rings is 6.25 (8)°. The mol­ecules are stacked in columns along the b axis through inter­molecular N—H⋯O hydrogen bonds. The columns are further connected by weak C—H⋯O hydrogen bonds. The compound is not isomorphous with the fluoro analogue.

Related literature

For general background, see: Capdeville et al. (2002[Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug Discov. 1, 493-502.]); Chopra & Row (2005[Chopra, D. & Row, T. N. G. (2005). Cryst. Growth Des. 5, 1679-1681.]); Ho et al. (2002[Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501-1506.]); Igawa et al. (1999[Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Patent Kokai Tokkyo Koho. JP 11 171 848.]); Jackson et al. (1994[Jackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220-3230.]); Makino et al. (2003[Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389-392.]); Zhichkin et al. (2007[Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.]). For related structures, see: Chopra & Row (2005[Chopra, D. & Row, T. N. G. (2005). Cryst. Growth Des. 5, 1679-1681.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl2NO

  • Mr = 266.13

  • Monoclinic, P 21 /n

  • a = 10.7913 (14) Å

  • b = 4.8078 (6) Å

  • c = 23.570 (3) Å

  • β = 97.718 (3)°

  • V = 1211.8 (3) Å3

  • Z = 4

  • Mo- Kα radiation

  • μ = 0.52 mm−1

  • T = 223 (1) K

  • 0.35 × 0.31 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.884, Tmax = 0.975

  • 14924 measured reflections

  • 3527 independent reflections

  • 1847 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.154

  • S = 1.00

  • 3527 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (2) 2.12 (2) 2.901 (2) 154 (2)
C2—H2⋯O1ii 0.94 2.59 3.456 (3) 153
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+2, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The benzanilide core is present in compounds with a wide range of biological activities, and for this reason it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino et al., 2003), benzodiazepine-2,5-diones (Ho et al., 2002), and 2,3-disubstituted 3H-quinazoline-4-ones (Zhichkin et al., 2007). Benzanilides have established their efficacy as centroid elements of ligands that bind to a wide variety of receptor types. Thus, benzanilides containing aminoalkyl groups originally designed as peptidomimetic compounds, have been incorporated in an Arg-Gly-Asp cyclic peptide, yielding a high affinity GPIIb/IIIa ligand (Jackson et al., 1994). Imatinib is an ATP-site binding kinase inhibitor and platelet-derived growth factor receptor kinase (Capdeville et al., 2002). Benzamides have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa et al., 1999).

In the crystal structure of the title compound (Fig. 1), the molecules are stacked in columns along the b cell-axis through intermolecular N—H···O hydrogen bonds (Table 1). The columns are also connected by weak C—H···O hydrogen bonds (Fig. 2). No significant ππ interactions are observed in the columns. The title compound is not isomorphous with the F analogue compound, 4-fluoro-N-(2-fluorophenyl)-benzamide, which exhibits a dimorphic behaviour, with non-centrosymmetric space groups P21 and Pca21 (Chopra & Row, 2005). The different crystal structures of the F analogue are probably originated from the intermolecular C—H···F interactions.

Related literature top

For related literature, see: Capdeville et al. (2002); Chopra & Row (2005); Ho et al. (2002); Igawa et al. (1999); Jackson et al. (1994); Makino et al. (2003); Zhichkin et al. (2007).

Experimental top

4-Chorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-chloroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq. 1 M HCl and saturated aq. NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%). Anal. calcd. for C13H9Cl2NO: C 58.67, H 3.41, N 5.26%; found: C 58.23, H 3.46, N 5.08%.

Refinement top

The N-bound H atom was located in a difference map and refined freely. Other H atoms were positioned geometrically (C—H = 0.94 Å) and treated as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. The displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Crystal packing, viewed along the b axis. Intermolecular C—H···O hydrogen bonds are shown as dashed lines.
4-Chloro-N-(2-chlorophenyl)benzamide top
Crystal data top
C13H9Cl2NOF(000) = 544.00
Mr = 266.13Dx = 1.459 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 8924 reflections
a = 10.7913 (14) Åθ = 3.0–30.0°
b = 4.8078 (6) ŵ = 0.52 mm1
c = 23.570 (3) ÅT = 223 K
β = 97.718 (3)°Plate, colourless
V = 1211.8 (3) Å30.35 × 0.31 × 0.05 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
1847 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.042
ω scansθmax = 30.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.884, Tmax = 0.975k = 66
14924 measured reflectionsl = 3133
3527 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.079P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3527 reflectionsΔρmax = 0.23 e Å3
158 parametersΔρmin = 0.39 e Å3
Crystal data top
C13H9Cl2NOV = 1211.8 (3) Å3
Mr = 266.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7913 (14) ŵ = 0.52 mm1
b = 4.8078 (6) ÅT = 223 K
c = 23.570 (3) Å0.35 × 0.31 × 0.05 mm
β = 97.718 (3)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
3527 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1847 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.975Rint = 0.042
14924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
3527 reflectionsΔρmin = 0.39 e Å3
158 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01681 (5)0.18996 (11)0.55784 (3)0.0701 (2)
Cl20.40856 (8)0.29994 (18)0.27592 (3)0.1044 (3)
O10.31900 (14)0.9176 (3)0.52035 (6)0.0704 (4)
N10.24949 (15)0.4883 (3)0.54060 (7)0.0533 (4)
H10.246 (2)0.321 (5)0.5293 (10)0.074 (7)*
C10.32607 (17)0.5666 (4)0.45021 (8)0.0523 (4)
C20.4236 (2)0.6900 (4)0.42566 (10)0.0650 (6)
H20.47210.83030.44560.078*
C30.4487 (2)0.6070 (5)0.37257 (11)0.0725 (6)
H30.51520.68820.35650.087*
C40.3765 (2)0.4053 (5)0.34303 (10)0.0695 (6)
C50.2787 (2)0.2815 (5)0.36606 (10)0.0680 (6)
H50.22950.14440.34540.082*
C60.25440 (19)0.3623 (4)0.41982 (9)0.0599 (5)
H60.18870.27800.43590.072*
C70.29897 (17)0.6734 (3)0.50645 (9)0.0528 (5)
C80.20311 (18)0.5546 (4)0.59237 (8)0.0531 (4)
C90.09424 (19)0.4263 (4)0.60525 (8)0.0554 (5)
C100.0457 (2)0.4875 (5)0.65537 (9)0.0727 (6)
H100.02670.39650.66390.087*
C110.1041 (3)0.6823 (6)0.69252 (11)0.0870 (8)
H110.07010.72950.72590.104*
C120.2115 (3)0.8069 (5)0.68088 (11)0.0833 (8)
H120.25170.93680.70690.100*
C130.2623 (2)0.7451 (4)0.63118 (10)0.0694 (6)
H130.33660.83220.62390.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0638 (4)0.0686 (4)0.0792 (4)0.0099 (2)0.0140 (3)0.0038 (3)
Cl20.1190 (6)0.1252 (6)0.0763 (5)0.0111 (5)0.0399 (4)0.0089 (4)
O10.0844 (10)0.0411 (7)0.0895 (11)0.0058 (7)0.0258 (8)0.0078 (7)
N10.0588 (10)0.0416 (8)0.0610 (10)0.0015 (7)0.0138 (7)0.0073 (7)
C10.0492 (11)0.0427 (9)0.0664 (12)0.0048 (8)0.0125 (9)0.0010 (8)
C20.0556 (12)0.0544 (11)0.0883 (16)0.0030 (9)0.0215 (11)0.0019 (10)
C30.0654 (14)0.0695 (13)0.0890 (16)0.0007 (11)0.0333 (12)0.0051 (12)
C40.0710 (14)0.0737 (14)0.0667 (13)0.0155 (11)0.0193 (11)0.0037 (11)
C50.0673 (14)0.0718 (13)0.0649 (14)0.0011 (11)0.0085 (10)0.0083 (10)
C60.0560 (12)0.0605 (11)0.0647 (12)0.0051 (9)0.0137 (9)0.0010 (9)
C70.0468 (10)0.0411 (9)0.0714 (12)0.0028 (7)0.0114 (9)0.0016 (8)
C80.0581 (11)0.0459 (9)0.0546 (11)0.0081 (8)0.0050 (8)0.0026 (8)
C90.0584 (12)0.0542 (10)0.0536 (10)0.0086 (9)0.0078 (9)0.0019 (9)
C100.0785 (15)0.0826 (14)0.0596 (12)0.0170 (12)0.0185 (11)0.0073 (12)
C110.111 (2)0.0959 (19)0.0554 (14)0.0370 (17)0.0142 (14)0.0010 (13)
C120.105 (2)0.0804 (16)0.0593 (14)0.0151 (15)0.0073 (13)0.0202 (11)
C130.0756 (15)0.0632 (12)0.0665 (14)0.0028 (11)0.0010 (11)0.0106 (10)
Geometric parameters (Å, º) top
Cl1—C91.729 (2)C5—C61.384 (3)
Cl2—C41.739 (2)C5—H50.9400
O1—C71.230 (2)C6—H60.9400
N1—C71.357 (2)C8—C131.388 (3)
N1—C81.416 (2)C8—C91.396 (3)
N1—H10.84 (2)C9—C101.387 (3)
C1—C61.388 (3)C10—C111.376 (4)
C1—C21.399 (3)C10—H100.9400
C1—C71.487 (3)C11—C121.364 (4)
C2—C31.375 (3)C11—H110.9400
C2—H20.9400C12—C131.391 (3)
C3—C41.373 (3)C12—H120.9400
C3—H30.9400C13—H130.9400
C4—C51.384 (3)
C7—N1—C8125.20 (16)O1—C7—N1122.49 (18)
C7—N1—H1116.3 (16)O1—C7—C1121.24 (16)
C8—N1—H1118.4 (16)N1—C7—C1116.26 (16)
C6—C1—C2118.98 (18)C13—C8—C9118.34 (19)
C6—C1—C7122.80 (16)C13—C8—N1122.11 (19)
C2—C1—C7118.10 (18)C9—C8—N1119.55 (17)
C3—C2—C1120.3 (2)C10—C9—C8121.1 (2)
C3—C2—H2119.8C10—C9—Cl1119.00 (17)
C1—C2—H2119.8C8—C9—Cl1119.86 (15)
C4—C3—C2119.9 (2)C11—C10—C9119.5 (2)
C4—C3—H3120.0C11—C10—H10120.2
C2—C3—H3120.0C9—C10—H10120.2
C3—C4—C5121.0 (2)C12—C11—C10120.0 (2)
C3—C4—Cl2119.89 (18)C12—C11—H11120.0
C5—C4—Cl2119.1 (2)C10—C11—H11120.0
C6—C5—C4119.1 (2)C11—C12—C13121.2 (2)
C6—C5—H5120.4C11—C12—H12119.4
C4—C5—H5120.4C13—C12—H12119.4
C5—C6—C1120.66 (19)C8—C13—C12119.8 (2)
C5—C6—H6119.7C8—C13—H13120.1
C1—C6—H6119.7C12—C13—H13120.1
C6—C1—C2—C30.8 (3)C2—C1—C7—N1151.15 (18)
C7—C1—C2—C3177.11 (19)C7—N1—C8—C1339.9 (3)
C1—C2—C3—C41.1 (3)C7—N1—C8—C9140.0 (2)
C2—C3—C4—C50.5 (3)C13—C8—C9—C100.3 (3)
C2—C3—C4—Cl2179.88 (18)N1—C8—C9—C10179.58 (17)
C3—C4—C5—C60.4 (3)C13—C8—C9—Cl1179.47 (15)
Cl2—C4—C5—C6179.04 (17)N1—C8—C9—Cl10.4 (2)
C4—C5—C6—C10.6 (3)C8—C9—C10—C111.4 (3)
C2—C1—C6—C50.0 (3)Cl1—C9—C10—C11177.82 (17)
C7—C1—C6—C5176.07 (19)C9—C10—C11—C122.2 (4)
C8—N1—C7—O17.0 (3)C10—C11—C12—C131.4 (4)
C8—N1—C7—C1171.95 (16)C9—C8—C13—C121.1 (3)
C6—C1—C7—O1146.2 (2)N1—C8—C13—C12178.72 (19)
C2—C1—C7—O129.9 (3)C11—C12—C13—C80.3 (4)
C6—C1—C7—N132.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (2)2.12 (2)2.901 (2)154 (2)
C2—H2···O1ii0.942.593.456 (3)153
C13—H13···O10.942.462.884 (3)108
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)10.7913 (14), 4.8078 (6), 23.570 (3)
β (°) 97.718 (3)
V3)1211.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.35 × 0.31 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID II
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.884, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
14924, 3527, 1847
Rint0.042
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.154, 1.00
No. of reflections3527
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.39

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (2)2.12 (2)2.901 (2)154 (2)
C2—H2···O1ii0.942.593.456 (3)153
Symmetry codes: (i) x, y1, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

AS gratefully acknowledges a research grant from Quaid-I-Azam University, Islamabad.

References

First citationCapdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug Discov. 1, 493–502.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChopra, D. & Row, T. N. G. (2005). Cryst. Growth Des. 5, 1679–1681.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHo, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501–1506.  CrossRef CAS Google Scholar
First citationIgawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Patent Kokai Tokkyo Koho. JP 11 171 848.  Google Scholar
First citationJackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc. 116, 3220–3230.  CSD CrossRef CAS Web of Science Google Scholar
First citationMakino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc. 24, 389–392.  CAS Google Scholar
First citationRigaku/MSC (2004). CrystalStructure and PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds