organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,3,5-triol at 105 K

aDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

(Received 16 September 2008; accepted 23 September 2008; online 27 September 2008)

The structure of the title compound, C6H6O3, has been redetermined at low temperature [room-temperature structure: Maartmann-Moe (1965[Maartmann-Moe, K. (1965). Acta Cryst. 19, 155-157.]). Acta Cryst. 19, 155–157]. The mol­ecule is planar with approximate D3h point symmetry, yet it crystallizes in the chiral ortho­rhom­bic space group P212121 with a three-dimensional hydrogen-bonding network containing infinite O—H⋯O—H⋯O—H chains.

Related literature

For the structure at room temperature, see: Maartmann-Moe (1965[Maartmann-Moe, K. (1965). Acta Cryst. 19, 155-157.]). For the hydrate structure, see: Wallwork & Powell (1957[Wallwork, S. C. & Powell, H. M. (1957). Acta Cryst. 10, 48-52.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6O3

  • Mr = 126.11

  • Orthorhombic, P 21 21 21

  • a = 4.7778 (2) Å

  • b = 9.3581 (4) Å

  • c = 12.4433 (6) Å

  • V = 556.35 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 105 (2) K

  • 0.20 × 0.08 × 0.05 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.997

  • 6178 measured reflections

  • 743 independent reflections

  • 728 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.081

  • S = 1.13

  • 743 reflections

  • 91 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.83 (2) 1.94 (2) 2.7426 (13) 164 (2)
O2—H2⋯O1ii 0.79 (2) 1.97 (2) 2.7424 (14) 169 (2)
O3—H3⋯O2iii 0.86 (2) 1.85 (2) 2.7086 (16) 173.3 (17)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the benzene-1,3,5-triol, commonly known as phloroglucinol, is shown in Fig. 1. The molecule is essentially planar, with D3h point symmetry, having only small out-of-plane rotations for the hydroxyl groups. Rather than forming a layer-like structure, a folded molecular aggregation pattern is observed in the crystal (Fig. 2) giving a three-dimensional hydrogen-bonding pattern. The three hydrogen bonds listed in Table 1 form an infinite zigzag chain along the b axis as shown in Fig. 3. The agreement with the original structure determination (Maartmann-Moe, 1965) is generally good, but with some significant changes in the hydrogen bonding geometries.

Benzene-1,3,5-triol has also been crystallized as a dihydrate, which is divided into layers with water molecules as connectors (Wallwork & Powell, 1957).

Related literature top

For the structure at room temperature, see: Maartmann-Moe (1965). For the hydrate structure, see: Wallwork & Powell (1957).

Experimental top

The title compound was obtained from Fluka. Crystals were grown by diffusion of hexane into 30 µl of a solution containing 2.1 mg benzene-1,3,5-triol and 1.3 mg triazin in 3-methyl-2-butanone.

Refinement top

Positional parameters were refined for hydroxylic H atoms, while H atoms bonded to C were positioned with idealized geometry and C—H distance 0.95 Å. Uiso values were 1.5Ueq(O) and 1.2Ueq(C). In the absence of significant anomalous scattering effects, 1585 Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level and H-atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. Molecular packing and unit cell of the title compound viewed along the b axis. Hydrogen bonding is indicated by dashed lines, H-atoms bonded to C have been omitted for clarity. The three different hydroxylic O atoms have been depicted in different colours.
[Figure 3] Fig. 3. Detail of the hydrogen bonding pattern showing infinite hydrogen-bonded chains.
benzene-1,3,5-triol top
Crystal data top
C6H6O3F(000) = 264
Mr = 126.11Dx = 1.506 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4652 reflections
a = 4.7778 (2) Åθ = 2.7–27.1°
b = 9.3581 (4) ŵ = 0.12 mm1
c = 12.4433 (6) ÅT = 105 K
V = 556.35 (4) Å3Needle, colourless
Z = 40.20 × 0.08 × 0.05 mm
Data collection top
Siemens SMART CCD
diffractometer
743 independent reflections
Radiation source: fine-focus sealed tube728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.916, Tmax = 0.997k = 1111
6178 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.054P)2 + 0.1017P]
where P = (Fo2 + 2Fc2)/3
743 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H6O3V = 556.35 (4) Å3
Mr = 126.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.7778 (2) ŵ = 0.12 mm1
b = 9.3581 (4) ÅT = 105 K
c = 12.4433 (6) Å0.20 × 0.08 × 0.05 mm
Data collection top
Siemens SMART CCD
diffractometer
743 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
728 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.997Rint = 0.014
6178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.27 e Å3
743 reflectionsΔρmin = 0.20 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were collected by measuring three sets of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 5.00 cm. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2140 (2)0.48267 (10)0.56722 (8)0.0160 (3)
H10.189 (5)0.560 (2)0.5979 (15)0.024*
O20.8083 (3)0.25657 (10)0.31075 (8)0.0167 (3)
H20.760 (5)0.189 (2)0.3432 (14)0.025*
O30.7415 (2)0.76483 (10)0.32139 (8)0.0160 (3)
H30.884 (5)0.7549 (19)0.2792 (16)0.024*
C10.3967 (3)0.49437 (14)0.48167 (11)0.0135 (3)
C20.5004 (3)0.36808 (13)0.43819 (11)0.0141 (3)
H210.44230.27790.46520.017*
C30.6913 (3)0.37730 (13)0.35413 (10)0.0135 (3)
C40.7758 (3)0.50800 (15)0.31202 (11)0.0150 (3)
H410.90540.51260.25420.018*
C50.6651 (3)0.63152 (13)0.35689 (10)0.0134 (3)
C60.4732 (3)0.62700 (13)0.44129 (11)0.0137 (3)
H610.39700.71240.47040.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (5)0.0107 (5)0.0173 (5)0.0003 (4)0.0057 (4)0.0006 (3)
O20.0217 (5)0.0090 (5)0.0194 (5)0.0017 (4)0.0058 (4)0.0000 (4)
O30.0209 (6)0.0093 (5)0.0177 (5)0.0015 (4)0.0054 (5)0.0009 (3)
C10.0127 (6)0.0142 (6)0.0136 (6)0.0006 (6)0.0006 (5)0.0004 (5)
C20.0152 (6)0.0109 (6)0.0161 (6)0.0009 (5)0.0003 (6)0.0017 (5)
C30.0142 (6)0.0108 (6)0.0154 (6)0.0014 (6)0.0013 (6)0.0012 (5)
C40.0158 (6)0.0141 (6)0.0150 (6)0.0000 (5)0.0032 (5)0.0003 (5)
C50.0152 (7)0.0104 (6)0.0145 (6)0.0017 (6)0.0014 (6)0.0012 (5)
C60.0151 (6)0.0110 (6)0.0152 (6)0.0005 (5)0.0008 (6)0.0020 (5)
Geometric parameters (Å, º) top
O1—C11.3808 (17)C2—C31.3905 (19)
O1—H10.83 (2)C2—H210.9500
O2—C31.3712 (16)C3—C41.3905 (18)
O2—H20.79 (2)C4—C51.3884 (19)
O3—C51.3730 (15)C4—H410.9500
O3—H30.86 (2)C5—C61.3945 (19)
C1—C61.3881 (17)C6—H610.9500
C1—C21.3910 (18)
C1—O1—H1112.2 (14)C2—C3—C4121.90 (12)
C3—O2—H2109.9 (14)C5—C4—C3118.05 (12)
C5—O3—H3107.9 (12)C5—C4—H41121.0
O1—C1—C6121.10 (11)C3—C4—H41121.0
O1—C1—C2117.24 (11)O3—C5—C4121.72 (12)
C6—C1—C2121.67 (12)O3—C5—C6116.41 (11)
C3—C2—C1118.27 (12)C4—C5—C6121.87 (12)
C3—C2—H21120.9C1—C6—C5118.22 (12)
C1—C2—H21120.9C1—C6—H61120.9
O2—C3—C2120.83 (12)C5—C6—H61120.9
O2—C3—C4117.26 (12)
O1—C1—C2—C3178.06 (12)O1—C1—C6—C5178.09 (12)
C6—C1—C2—C31.8 (2)C2—C1—C6—C51.8 (2)
C1—C2—C3—O2177.59 (12)O3—C5—C6—C1178.14 (12)
C1—C2—C3—C41.1 (2)C4—C5—C6—C11.0 (2)
O2—C3—C4—C5178.32 (13)H1—O1—C1—C613.0 (16)
C2—C3—C4—C50.4 (2)H2—O2—C3—C24.3 (16)
C3—C4—C5—O3178.75 (13)H3—O3—C5—C410.8 (14)
C3—C4—C5—C60.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.83 (2)1.94 (2)2.7426 (13)164 (2)
O2—H2···O1ii0.79 (2)1.97 (2)2.7424 (14)169 (2)
O3—H3···O2iii0.86 (2)1.85 (2)2.7086 (16)173.3 (17)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6O3
Mr126.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)105
a, b, c (Å)4.7778 (2), 9.3581 (4), 12.4433 (6)
V3)556.35 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.20 × 0.08 × 0.05
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.916, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
6178, 743, 728
Rint0.014
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.081, 1.13
No. of reflections743
No. of parameters91
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Selected torsion angles (º) top
H1—O1—C1—C613.0 (16)H3—O3—C5—C410.8 (14)
H2—O2—C3—C24.3 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.83 (2)1.94 (2)2.7426 (13)164 (2)
O2—H2···O1ii0.79 (2)1.97 (2)2.7424 (14)169 (2)
O3—H3···O2iii0.86 (2)1.85 (2)2.7086 (16)173.3 (17)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The purchase of the diffractometer was made possible through support from the Research Council of Norway (NFR).

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMaartmann-Moe, K. (1965). Acta Cryst. 19, 155–157.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWallwork, S. C. & Powell, H. M. (1957). Acta Cryst. 10, 48–52.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds