metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tris­­(μ3-5-amino­isophthalato)di­aqua­dicerium(III)]

aCollege of Chemistry and Chemical Engineering, Ocean University of China, Shandong 266100, People's Republic of China
*Correspondence e-mail: fanyuhua301@163.com

(Received 5 September 2008; accepted 21 September 2008; online 27 September 2008)

In the title complex, [Ce2(C8H5NO4)3(H2O)2]n, each Ce ion is in nine-coordinated environment. Eight O atoms from six ligands participate in coordination, in addition to one O atom from a water mol­ecule. Both carboxyl­ate groups from the ligands chelate the Ce atoms, forming two four-membered rings. The 5-amino­isophthalate ligands also bridge the Ce centers, forming a two-dimensional network, and O—H⋯O and N—H⋯O hydrogen bonds complete the structure.

Related literature

For general background, see: Rzaczynska & Belsky (1994[Rzaczynska, Z. & Belsky, V. K. (1994). Pol. J. Chem. 68, 309-312.]); Daiguebonne et al. (2000[Daiguebonne, C., Guillou, O. & Boubekeur, K. (2000). Inorg. Chim. Acta, 304, 161-169.]); Wu et al. (2002a[Wu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002a). Inorg. Chem. 41, 5636-5637.],b[Wu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002b). Z. Anorg. Allg. Chem., 628, 1935-1937.]); Liao et al. (2004[Liao, Q.-X., Li, Z.-J., Zhang, J., Kang, Y., Dai, Y.-M. & Yao, Y.-G. (2004). Acta Cryst. C60, m509-m511.]).

[Scheme 1]

Experimental

Crystal data
  • [Ce2(C8H5NO4)3(H2O)2]

  • Mr = 853.66

  • Orthorhombic, P b c n

  • a = 12.2360 (7) Å

  • b = 8.0600 (5) Å

  • c = 25.6700 (15) Å

  • V = 2531.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 298 (2) K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.516, Tmax = 0.545 (expected range = 0.474–0.501)

  • 11818 measured reflections

  • 2233 independent reflections

  • 2001 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.045

  • S = 1.04

  • 2233 reflections

  • 196 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.86 2.63 3.436 (3) 157
N1—H1D⋯O1ii 0.86 2.39 3.154 (3) 148
O1W—H1A⋯O3i 0.85 2.07 2.898 (3) 165
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

5-aminoisophthalic acid forms covalent bonds with metal ions, especially with transition metals through nitrogen atom of amino group as well as oxygen atoms of carboxylic groups (Wu et al., 2002a; Wu et al., 2002b; Liao et al., 2004) and with lanthanide ions as strong Pearsons acids through oxygen atoms of carboxylic groups (Rzaczynska et al., 1994). Carboxylic groups of acid have a great ability to form infinite connection with metal ions and remarkable versatility in adopting different modes of bonding-from unidendate, chelating and bridging, sometimes in more than one way in the same compound (Daiguebonne et al., 2000). In this paper, we present a title complex, (C24H19Ce2N3O14)n, (I), synthesized by a condensation reaction of 5-aminoisophthalic acid with cerous nitrate under the condition of high pressure.

The molecular structure of the title complex, (I), is shown in Fig.1. The ligands construct a floor-like layer by chelating and bridging metal ions. The carboxy groups link layers in η1,3 mode, thus resulting in one-dimension metal-channels along b-axis, and the water molecules coordinating with metal ions are pending in these channels.

Related literature top

For general background, see: Rzaczynska et al. (1994); Daiguebonne et al. (2000); Wu et al. (2002a,b); Liao et al. (2004).

Experimental top

5-aminoisophthalic acid (0.3 mmol, 54.6 mg) and sodium hydroxide (0.3 mmol,12.5 mg) dissolved in 20 ml water, heated to boiled and then stop heating. Cerous nitrate hexahydrate (0.3 mmol,130.3 mg) dissolved in 5 ml water was mixed with the above solution, stirring for half an hour. Then transfer them into a 50 ml teflon reactor, under autogenous pressure at 160°C for 3 days and then cooled to room temperature, after which large brown block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H 0.93 (aromatic) 0.93, N—H 0.86 (amino), O—H 0.85 Å (water), withUiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Poly[tris(µ3-5-aminoisophthalato)diaquadicerium(III)] top
Crystal data top
[Ce2(C8H5NO4)3(H2O)2]F(000) = 1648
Mr = 853.66Dx = 2.240 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2n 2abCell parameters from 3043 reflections
a = 12.2360 (7) Åθ = 2.3–28.4°
b = 8.0600 (5) ŵ = 3.63 mm1
c = 25.6700 (15) ÅT = 298 K
V = 2531.6 (3) Å3Block, brown
Z = 40.21 × 0.20 × 0.19 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2233 independent reflections
Radiation source: fine-focus sealed tube2001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.516, Tmax = 0.545k = 99
11818 measured reflectionsl = 3023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0208P)2 + 2.5416P]
where P = (Fo2 + 2Fc2)/3
2233 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.45 e Å3
2 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Ce2(C8H5NO4)3(H2O)2]V = 2531.6 (3) Å3
Mr = 853.66Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 12.2360 (7) ŵ = 3.63 mm1
b = 8.0600 (5) ÅT = 298 K
c = 25.6700 (15) Å0.21 × 0.20 × 0.19 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2233 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2001 reflections with I > 2σ(I)
Tmin = 0.516, Tmax = 0.545Rint = 0.034
11818 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0192 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
2233 reflectionsΔρmin = 0.64 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.694451 (12)0.038178 (18)0.094984 (6)0.01318 (7)
H1A0.49030.12280.04870.016*
H1B0.46710.11400.09980.016*
N10.1463 (2)0.4699 (3)0.15158 (11)0.0302 (7)
H1C0.15310.41280.17970.036*
H1D0.10420.55340.15710.036*
N20.50000.7310 (4)0.25000.0418 (11)
H2A0.54620.78430.23110.050*
O10.53914 (15)0.2297 (2)0.12641 (8)0.0227 (5)
O20.62001 (17)0.4491 (3)0.09148 (8)0.0250 (5)
O30.38087 (15)0.8402 (2)0.01169 (8)0.0220 (5)
O40.77549 (15)0.2778 (2)0.03332 (8)0.0204 (4)
O50.63242 (18)0.0423 (2)0.18383 (9)0.0282 (5)
O60.70692 (16)0.2648 (2)0.15024 (8)0.0232 (5)
O1W0.51934 (16)0.1043 (3)0.07824 (9)0.0280 (5)
C10.4286 (2)0.4564 (3)0.09890 (11)0.0159 (6)
C20.4177 (2)0.5614 (3)0.05642 (12)0.0177 (6)
H20.47860.58850.03650.021*
C30.3163 (2)0.6262 (3)0.04351 (11)0.0174 (6)
C40.2262 (2)0.5922 (4)0.07468 (12)0.0179 (6)
H40.15760.63160.06520.021*
C50.2384 (2)0.4998 (3)0.11991 (12)0.0189 (6)
C60.3393 (2)0.4281 (3)0.13138 (12)0.0182 (6)
H60.34690.36130.16070.022*
C70.5365 (2)0.3728 (3)0.10682 (11)0.0164 (6)
C80.3065 (2)0.7357 (3)0.00284 (12)0.0173 (6)
C90.5727 (2)0.2982 (3)0.21853 (11)0.0171 (6)
C100.5748 (2)0.4714 (3)0.21935 (12)0.0205 (6)
H100.62610.52830.19950.025*
C110.50000.5599 (5)0.25000.0212 (9)
C120.50000.2132 (5)0.25000.0176 (9)
H120.50000.09780.25000.021*
C130.6425 (2)0.1977 (3)0.18270 (11)0.0165 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.01069 (10)0.01242 (10)0.01642 (12)0.00009 (6)0.00036 (6)0.00135 (6)
N10.0194 (14)0.0396 (16)0.0314 (18)0.0059 (12)0.0102 (12)0.0138 (13)
N20.070 (3)0.0152 (19)0.040 (3)0.0000.030 (2)0.000
O10.0200 (10)0.0169 (10)0.0311 (13)0.0053 (8)0.0002 (9)0.0026 (9)
O20.0132 (11)0.0306 (12)0.0314 (14)0.0012 (9)0.0007 (9)0.0030 (10)
O30.0243 (11)0.0195 (11)0.0224 (12)0.0062 (9)0.0041 (9)0.0065 (9)
O40.0179 (10)0.0227 (11)0.0205 (11)0.0003 (8)0.0036 (9)0.0016 (9)
O50.0395 (13)0.0170 (11)0.0280 (13)0.0005 (9)0.0133 (11)0.0036 (9)
O60.0235 (11)0.0225 (9)0.0236 (12)0.0025 (9)0.0101 (9)0.0048 (8)
O1W0.0187 (11)0.0323 (12)0.0329 (13)0.0066 (10)0.0010 (10)0.0076 (11)
C10.0136 (14)0.0137 (14)0.0204 (16)0.0002 (11)0.0011 (11)0.0010 (12)
C20.0151 (14)0.0154 (14)0.0226 (16)0.0004 (11)0.0026 (13)0.0014 (12)
C30.0194 (15)0.0126 (14)0.0201 (16)0.0010 (11)0.0020 (12)0.0016 (12)
C40.0135 (13)0.0178 (14)0.0223 (16)0.0017 (12)0.0013 (12)0.0024 (13)
C50.0140 (14)0.0195 (14)0.0233 (17)0.0003 (12)0.0011 (13)0.0001 (13)
C60.0155 (14)0.0168 (14)0.0225 (17)0.0002 (11)0.0007 (13)0.0032 (12)
C70.0132 (14)0.0191 (15)0.0168 (15)0.0005 (12)0.0013 (12)0.0024 (13)
C80.0186 (14)0.0156 (14)0.0176 (16)0.0047 (12)0.0009 (12)0.0033 (12)
C90.0185 (14)0.0173 (14)0.0155 (15)0.0003 (11)0.0017 (12)0.0005 (12)
C100.0255 (16)0.0184 (14)0.0176 (16)0.0040 (12)0.0050 (14)0.0020 (13)
C110.032 (2)0.015 (2)0.016 (2)0.0000.0031 (19)0.000
C120.021 (2)0.016 (2)0.016 (2)0.0000.0012 (17)0.000
C130.0162 (14)0.0189 (14)0.0144 (15)0.0002 (12)0.0001 (12)0.0004 (12)
Geometric parameters (Å, º) top
Ce1—O2i2.383 (2)O6—Ce1i2.448 (2)
Ce1—O6ii2.448 (2)O1W—H1A0.8500
Ce1—O1W2.469 (2)O1W—H1B0.8500
Ce1—O52.490 (2)C1—C21.387 (4)
Ce1—O3iii2.5263 (19)C1—C61.393 (4)
Ce1—O12.5779 (19)C1—C71.496 (4)
Ce1—O4i2.654 (2)C2—C31.387 (4)
Ce1—O42.6870 (19)C2—H20.9300
Ce1—O62.828 (2)C3—C41.389 (4)
Ce1—C8iii2.986 (3)C3—C81.486 (4)
N1—C51.410 (4)C4—C51.387 (4)
N1—H1C0.8600C4—H40.9300
N1—H1D0.8599C5—C61.395 (4)
N2—C111.379 (5)C6—H60.9300
N2—H2A0.8600C8—O4iii1.276 (3)
O1—C71.258 (3)C8—Ce1iii2.986 (3)
O2—C71.256 (3)C9—C121.384 (3)
O2—Ce1ii2.383 (2)C9—C101.396 (4)
O3—C81.261 (3)C9—C131.494 (4)
O3—Ce1iii2.5263 (19)C10—C111.402 (3)
O4—C8iii1.276 (3)C10—H100.9300
O4—Ce1ii2.654 (2)C11—C10iv1.402 (3)
O5—C131.259 (3)C12—C9iv1.384 (3)
O6—C131.268 (3)C12—H120.9300
O2i—Ce1—O6ii75.39 (7)C8iii—O4—Ce1ii122.81 (17)
O2i—Ce1—O1W132.85 (7)C8iii—O4—Ce190.56 (16)
O6ii—Ce1—O1W146.17 (7)Ce1ii—O4—Ce1105.55 (7)
O2i—Ce1—O5104.28 (7)C13—O5—Ce1102.02 (18)
O6ii—Ce1—O577.79 (7)C13—O6—Ce1i164.58 (18)
O1W—Ce1—O576.92 (7)C13—O6—Ce185.86 (16)
O2i—Ce1—O3iii115.63 (7)Ce1i—O6—Ce1107.23 (7)
O6ii—Ce1—O3iii114.74 (6)Ce1—O1W—H1A126.9
O1W—Ce1—O3iii73.53 (7)Ce1—O1W—H1B125.6
O5—Ce1—O3iii139.93 (7)H1A—O1W—H1B104.5
O2i—Ce1—O1153.47 (7)C2—C1—C6119.7 (3)
O6ii—Ce1—O178.08 (6)C2—C1—C7117.8 (3)
O1W—Ce1—O172.14 (7)C6—C1—C7122.5 (2)
O5—Ce1—O169.18 (7)C3—C2—C1120.2 (3)
O3iii—Ce1—O176.33 (7)C3—C2—H2119.9
O2i—Ce1—O4i66.87 (7)C1—C2—H2119.9
O6ii—Ce1—O4i142.22 (6)C2—C3—C4119.9 (3)
O1W—Ce1—O4i69.43 (6)C2—C3—C8119.1 (2)
O5—Ce1—O4i112.50 (6)C4—C3—C8121.0 (2)
O3iii—Ce1—O4i81.52 (6)C5—C4—C3120.2 (3)
O1—Ce1—O4i139.66 (6)C5—C4—H4119.9
O2i—Ce1—O480.95 (6)C3—C4—H4119.9
O6ii—Ce1—O472.12 (7)C4—C5—C6119.6 (3)
O1W—Ce1—O4123.51 (7)C4—C5—N1119.3 (3)
O5—Ce1—O4147.09 (6)C6—C5—N1121.0 (3)
O3iii—Ce1—O449.99 (6)C1—C6—C5120.0 (3)
O1—Ce1—O491.49 (6)C1—C6—H6120.0
O4i—Ce1—O499.54 (6)C5—C6—H6120.0
O2i—Ce1—O672.98 (6)O2—C7—O1123.6 (3)
O6ii—Ce1—O6104.06 (7)O2—C7—C1117.1 (2)
O1W—Ce1—O674.48 (7)O1—C7—C1119.3 (2)
O5—Ce1—O648.09 (6)O3—C8—O4iii120.9 (3)
O3iii—Ce1—O6141.19 (6)O3—C8—C3118.9 (2)
O1—Ce1—O6113.57 (6)O4iii—C8—C3120.2 (2)
O4i—Ce1—O666.99 (6)O3—C8—Ce1iii56.79 (15)
O4—Ce1—O6153.67 (5)O4iii—C8—Ce1iii64.13 (15)
O2i—Ce1—C8iii99.07 (7)C3—C8—Ce1iii175.47 (19)
O6ii—Ce1—C8iii93.72 (7)C12—C9—C10119.9 (3)
O1W—Ce1—C8iii98.21 (7)C12—C9—C13117.3 (3)
O5—Ce1—C8iii152.07 (7)C10—C9—C13122.8 (3)
O3iii—Ce1—C8iii24.68 (7)C9—C10—C11120.4 (3)
O1—Ce1—C8iii83.09 (7)C9—C10—H10119.8
O4i—Ce1—C8iii90.61 (7)C11—C10—H10119.8
O4—Ce1—C8iii25.31 (6)N2—C11—C10iv120.60 (18)
O6—Ce1—C8iii157.60 (7)N2—C11—C10120.60 (18)
C5—N1—H1C119.9C10iv—C11—C10118.8 (4)
C5—N1—H1D116.1C9iv—C12—C9120.6 (4)
H1C—N1—H1D109.7C9iv—C12—H12119.7
C11—N2—H2A120.0C9—C12—H12119.7
C7—O1—Ce1116.27 (17)O5—C13—O6120.0 (3)
C7—O2—Ce1ii155.62 (19)O5—C13—C9118.0 (2)
C8—O3—Ce1iii98.53 (17)O6—C13—C9121.9 (2)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+3/2, y+1/2, z; (iii) x+1, y+1, z; (iv) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5v0.862.633.436 (3)157
N1—H1D···O1vi0.862.393.154 (3)148
O1W—H1A···O3v0.852.072.898 (3)165
Symmetry codes: (v) x, y1, z; (vi) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ce2(C8H5NO4)3(H2O)2]
Mr853.66
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)12.2360 (7), 8.0600 (5), 25.6700 (15)
V3)2531.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.63
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.516, 0.545
No. of measured, independent and
observed [I > 2σ(I)] reflections
11818, 2233, 2001
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.045, 1.04
No. of reflections2233
No. of parameters196
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.64

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.862.633.436 (3)156.9
N1—H1D···O1ii0.862.393.154 (3)148.2
O1W—H1A···O3i0.852.072.898 (3)164.5
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

References

First citationDaiguebonne, C., Guillou, O. & Boubekeur, K. (2000). Inorg. Chim. Acta, 304, 161–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiao, Q.-X., Li, Z.-J., Zhang, J., Kang, Y., Dai, Y.-M. & Yao, Y.-G. (2004). Acta Cryst. C60, m509–m511.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRzaczynska, Z. & Belsky, V. K. (1994). Pol. J. Chem. 68, 309–312.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002a). Inorg. Chem. 41, 5636–5637.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, C.-D., Lu, C.-Z., Zhuang, H.-H. & Huang, J.-S. (2002b). Z. Anorg. Allg. Chem., 628, 1935–1937.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds