organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,4-Di­chloro­phenyl)-2-(1H-indol-3-yl)-6-(2-pyridyl)-1,4-di­hydro­pyridine-4-carbo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 11 August 2008; accepted 28 August 2008; online 6 September 2008)

The title compound, C25H16Cl2N4, has intra­molecular N—H⋯N and C—H⋯Cl hydrogen bonds. In the crystal structure, mol­ecules are linked through N—H⋯N hydrogen bonds, forming a centrosymmetric R22(16) dimer.

Related literature

For related literature, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & &Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]); Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16Cl2N4

  • Mr = 443.32

  • Triclinic, [P \overline 1]

  • a = 8.0158 (9) Å

  • b = 10.0261 (12) Å

  • c = 14.3653 (17) Å

  • α = 72.260 (6)°

  • β = 79.420 (6)°

  • γ = 78.224 (6)°

  • V = 1067.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 (2) K

  • 0.35 × 0.32 × 0.28 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.895, Tmax = 0.915

  • 12383 measured reflections

  • 3707 independent reflections

  • 3172 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.140

  • S = 1.08

  • 3707 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N29 0.85 (3) 2.21 (3) 2.638 (2) 111 (2)
C4—H4⋯Cl1 0.98 2.56 3.114 (2) 116
N14—H14⋯N17i 0.84 (3) 2.14 (3) 2.937 (3) 158 (2)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960; Ho et al., 1986). Indoles also have been proved to display high aldose reductase inhibitory activity (Rajeswaran et al.., 1999). In view of these biological importance, an X-ray diffraction study of the title compound, (I), was carrid out.

The pyridine ring A adopts a planar conformation. The planar indole ring system and the pyridine ring E lie in the plane of pyridine ring A. The bond angle of (C3—C16—N17) 174.7 (2)° shows linear character of the cyano group, a feature observed in carbonitrile compounds. The sum of the angles at N1 of the pyridine ring (358.16°) is in accordance with sp2 hybridization (Beddoes et al., 1986).

The crystal structure is stabilized by N—H···N interactions. Atom N1 donates a proton to atom N29 and it forms a S(5) ring motif (Bernstein et al., 1995). The molecules at positions (x, y, z) and (1 - x,1 - y,-z) form a cyclic centrosymmetric R22(16) dimer through N14—H14···N17 hydrogen bonds.

Related literature top

For related literature, see: Beddoes et al. (1986); Bernstein et al. (1995); Harris & Uhle (1960); Ho et al. (1986); Rajeswaran et al. (1999); Stevenson et al. (2000).

Experimental top

A mixture of 3-cyanoacetyl indole (1 mmol), 2,4 dichlorobenzaldehyde (1 mmol) and 2-acetyl pyridine (1 mmol) in 5 g m of ammounim acetate under neat condition was refluxed for 6–8 h. After the completion of the reaction (as monitored by TLC), it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuo. The crude product was chromatographed and isolated in 80% yield (90:10, petroleum ether: ethyl acetate). The crude was recrystallized in ethanol

Refinement top

H atoms bonded to C were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The H atoms bonded to N were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecules showing the thermal ellipsoids are drawn at 50% probability level. The H atoms are shown as small circles of arbitrary radii.
4-(2,4-Dichlorophenyl)-2-(1H-indol-3-yl)-6-(2-pyridyl)- 1,4-dihydropyridine-4-carbonitrile top
Crystal data top
C25H16Cl2N4Z = 2
Mr = 443.32F(000) = 456
Triclinic, P1Dx = 1.379 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0158 (9) ÅCell parameters from 2900 reflections
b = 10.0261 (12) Åθ = 2.2–25.0°
c = 14.3653 (17) ŵ = 0.33 mm1
α = 72.260 (6)°T = 298 K
β = 79.420 (6)°Block, yellow
γ = 78.224 (6)°0.35 × 0.32 × 0.28 mm
V = 1067.3 (2) Å3
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3707 independent reflections
Radiation source: fine-focus sealed tube3172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 97
Tmin = 0.895, Tmax = 0.915k = 1111
12383 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.5551P]
where P = (Fo2 + 2Fc2)/3
3707 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C25H16Cl2N4γ = 78.224 (6)°
Mr = 443.32V = 1067.3 (2) Å3
Triclinic, P1Z = 2
a = 8.0158 (9) ÅMo Kα radiation
b = 10.0261 (12) ŵ = 0.33 mm1
c = 14.3653 (17) ÅT = 298 K
α = 72.260 (6)°0.35 × 0.32 × 0.28 mm
β = 79.420 (6)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
3707 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3172 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.915Rint = 0.023
12383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.61 e Å3
3707 reflectionsΔρmin = 0.64 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65524 (10)0.88516 (11)0.55182 (6)0.0861 (3)
Cl21.32340 (10)0.67807 (10)0.50447 (5)0.0832 (3)
N10.7936 (2)0.98325 (19)0.91511 (14)0.0411 (4)
H10.821 (3)0.993 (3)0.966 (2)0.055 (8)*
C20.7078 (3)0.8757 (2)0.92099 (15)0.0342 (4)
C30.6640 (3)0.8668 (2)0.83578 (15)0.0362 (5)
C40.7222 (3)0.9620 (2)0.73464 (15)0.0373 (5)
H40.62480.99100.69660.045*
C50.7668 (3)1.0937 (2)0.74732 (16)0.0412 (5)
H50.76921.17380.69360.049*
C60.8027 (3)1.0996 (2)0.83236 (15)0.0359 (5)
C70.6707 (3)0.7807 (2)1.01918 (15)0.0357 (5)
C80.6776 (3)0.8008 (2)1.11452 (15)0.0355 (4)
C90.7107 (3)0.9087 (2)1.14899 (17)0.0426 (5)
H90.73370.99461.10490.051*
C100.7087 (3)0.8860 (3)1.24827 (18)0.0515 (6)
H100.73160.95721.27090.062*
C110.6732 (3)0.7589 (3)1.31624 (18)0.0553 (6)
H110.67430.74651.38300.066*
C120.6369 (3)0.6519 (3)1.28621 (17)0.0523 (6)
H120.61080.56771.33140.063*
C130.6405 (3)0.6741 (2)1.18565 (16)0.0408 (5)
N140.6121 (3)0.5841 (2)1.13699 (14)0.0475 (5)
H140.586 (3)0.503 (3)1.1635 (19)0.050 (7)*
C150.6302 (3)0.6468 (2)1.03934 (16)0.0430 (5)
H150.61720.60540.99190.052*
C160.5542 (3)0.7736 (2)0.83477 (16)0.0433 (5)
N170.4654 (3)0.7028 (2)0.82628 (17)0.0636 (6)
C180.8703 (3)0.8858 (2)0.67753 (15)0.0365 (5)
C190.8534 (3)0.8496 (3)0.59441 (17)0.0455 (5)
C200.9908 (3)0.7851 (3)0.54127 (18)0.0548 (6)
H200.97610.76290.48530.066*
C211.1491 (3)0.7547 (3)0.57292 (17)0.0522 (6)
C221.1726 (3)0.7853 (3)0.65559 (18)0.0537 (6)
H221.28020.76280.67700.064*
C231.0333 (3)0.8503 (3)0.70659 (17)0.0474 (6)
H231.04920.87130.76280.057*
C240.8451 (3)1.2263 (2)0.85058 (16)0.0382 (5)
C250.8700 (4)1.3490 (2)0.77569 (19)0.0540 (6)
H250.86211.35430.71080.065*
C260.9063 (4)1.4627 (3)0.7986 (2)0.0614 (7)
H260.92341.54580.74950.074*
C270.9171 (3)1.4520 (3)0.8944 (2)0.0580 (7)
H270.94071.52760.91190.070*
C280.8923 (3)1.3271 (3)0.9640 (2)0.0560 (6)
H280.90001.32011.02920.067*
N290.8574 (3)1.2145 (2)0.94397 (14)0.0465 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0591 (4)0.1440 (8)0.0794 (5)0.0098 (4)0.0343 (4)0.0684 (6)
Cl20.0690 (5)0.1084 (7)0.0464 (4)0.0200 (4)0.0061 (3)0.0138 (4)
N10.0546 (11)0.0394 (10)0.0346 (10)0.0202 (8)0.0125 (8)0.0056 (8)
C20.0346 (10)0.0320 (10)0.0376 (11)0.0075 (8)0.0042 (8)0.0106 (8)
C30.0383 (11)0.0334 (11)0.0389 (11)0.0084 (8)0.0066 (9)0.0105 (9)
C40.0413 (11)0.0390 (11)0.0337 (11)0.0072 (9)0.0105 (8)0.0094 (9)
C50.0524 (13)0.0329 (11)0.0370 (12)0.0100 (9)0.0069 (9)0.0051 (9)
C60.0386 (11)0.0312 (10)0.0374 (11)0.0092 (8)0.0032 (8)0.0074 (9)
C70.0372 (11)0.0341 (10)0.0370 (11)0.0086 (8)0.0029 (8)0.0109 (9)
C80.0335 (10)0.0361 (11)0.0363 (11)0.0051 (8)0.0006 (8)0.0115 (9)
C90.0443 (12)0.0427 (12)0.0435 (12)0.0110 (10)0.0017 (9)0.0175 (10)
C100.0494 (13)0.0661 (16)0.0489 (14)0.0139 (12)0.0008 (10)0.0314 (12)
C110.0545 (14)0.0778 (18)0.0368 (13)0.0136 (13)0.0003 (10)0.0224 (12)
C120.0555 (14)0.0582 (15)0.0368 (12)0.0130 (12)0.0014 (10)0.0054 (11)
C130.0429 (12)0.0410 (12)0.0377 (12)0.0095 (9)0.0002 (9)0.0109 (9)
N140.0648 (13)0.0363 (10)0.0413 (11)0.0213 (9)0.0015 (9)0.0049 (8)
C150.0532 (13)0.0388 (12)0.0398 (12)0.0147 (10)0.0043 (10)0.0115 (9)
C160.0558 (13)0.0381 (12)0.0395 (12)0.0119 (10)0.0126 (10)0.0092 (9)
N170.0899 (17)0.0533 (13)0.0592 (14)0.0350 (12)0.0293 (12)0.0053 (10)
C180.0427 (11)0.0357 (11)0.0320 (11)0.0119 (9)0.0076 (8)0.0054 (8)
C190.0463 (12)0.0546 (14)0.0384 (12)0.0064 (10)0.0130 (10)0.0138 (10)
C200.0632 (16)0.0678 (16)0.0349 (12)0.0037 (13)0.0084 (11)0.0195 (11)
C210.0511 (14)0.0557 (15)0.0375 (13)0.0017 (11)0.0017 (10)0.0040 (11)
C220.0407 (12)0.0694 (17)0.0472 (14)0.0072 (11)0.0095 (10)0.0094 (12)
C230.0466 (13)0.0585 (14)0.0413 (12)0.0136 (11)0.0109 (10)0.0137 (11)
C240.0368 (11)0.0352 (11)0.0431 (12)0.0078 (9)0.0011 (9)0.0129 (9)
C250.0737 (17)0.0415 (13)0.0481 (14)0.0196 (12)0.0043 (12)0.0095 (11)
C260.0767 (18)0.0367 (13)0.0698 (18)0.0200 (12)0.0008 (14)0.0111 (12)
C270.0606 (16)0.0446 (14)0.0786 (19)0.0162 (12)0.0004 (13)0.0313 (13)
C280.0643 (16)0.0558 (15)0.0594 (16)0.0184 (12)0.0043 (12)0.0293 (13)
N290.0549 (11)0.0451 (11)0.0461 (11)0.0165 (9)0.0044 (9)0.0178 (9)
Geometric parameters (Å, º) top
Cl1—C191.737 (2)C12—H120.9300
Cl2—C211.740 (2)C13—N141.372 (3)
N1—C21.367 (3)N14—C151.345 (3)
N1—C61.392 (3)N14—H140.84 (3)
N1—H10.84 (3)C15—H150.9300
C2—C31.366 (3)C16—N171.147 (3)
C2—C71.459 (3)C18—C191.385 (3)
C3—C161.413 (3)C18—C231.388 (3)
C3—C41.526 (3)C19—C201.384 (3)
C4—C51.506 (3)C20—C211.371 (4)
C4—C181.524 (3)C20—H200.9300
C4—H40.9800C21—C221.367 (4)
C5—C61.326 (3)C22—C231.379 (3)
C5—H50.9300C22—H220.9300
C6—C241.487 (3)C23—H230.9300
C7—C151.377 (3)C24—N291.331 (3)
C7—C81.456 (3)C24—C251.388 (3)
C8—C91.407 (3)C25—C261.376 (3)
C8—C131.413 (3)C25—H250.9300
C9—C101.372 (3)C26—C271.364 (4)
C9—H90.9300C26—H260.9300
C10—C111.395 (4)C27—C281.369 (4)
C10—H100.9300C27—H270.9300
C11—C121.370 (4)C28—N291.339 (3)
C11—H110.9300C28—H280.9300
C12—C131.389 (3)
C2—N1—C6122.28 (18)C15—N14—C13109.48 (19)
C2—N1—H1120.3 (19)C15—N14—H14124.8 (17)
C6—N1—H1115.6 (19)C13—N14—H14125.8 (17)
C3—C2—N1117.87 (18)N14—C15—C7110.8 (2)
C3—C2—C7125.98 (18)N14—C15—H15124.6
N1—C2—C7116.15 (18)C7—C15—H15124.6
C2—C3—C16122.62 (19)N17—C16—C3174.7 (2)
C2—C3—C4122.64 (17)C19—C18—C23116.2 (2)
C16—C3—C4114.67 (18)C19—C18—C4123.25 (19)
C5—C4—C18111.94 (17)C23—C18—C4120.57 (19)
C5—C4—C3108.98 (16)C20—C19—C18122.5 (2)
C18—C4—C3112.45 (17)C20—C19—Cl1116.87 (17)
C5—C4—H4107.8C18—C19—Cl1120.65 (18)
C18—C4—H4107.8C21—C20—C19118.6 (2)
C3—C4—H4107.8C21—C20—H20120.7
C6—C5—C4122.38 (19)C19—C20—H20120.7
C6—C5—H5118.8C22—C21—C20121.4 (2)
C4—C5—H5118.8C22—C21—Cl2119.8 (2)
C5—C6—N1120.15 (18)C20—C21—Cl2118.7 (2)
C5—C6—C24125.28 (19)C21—C22—C23118.6 (2)
N1—C6—C24114.49 (18)C21—C22—H22120.7
C15—C7—C8105.65 (18)C23—C22—H22120.7
C15—C7—C2125.51 (19)C22—C23—C18122.7 (2)
C8—C7—C2128.75 (18)C22—C23—H23118.6
C9—C8—C13117.36 (19)C18—C23—H23118.6
C9—C8—C7136.58 (19)N29—C24—C25122.0 (2)
C13—C8—C7106.06 (18)N29—C24—C6115.44 (18)
C10—C9—C8119.2 (2)C25—C24—C6122.6 (2)
C10—C9—H9120.4C26—C25—C24119.1 (2)
C8—C9—H9120.4C26—C25—H25120.4
C9—C10—C11121.7 (2)C24—C25—H25120.4
C9—C10—H10119.1C27—C26—C25119.2 (2)
C11—C10—H10119.1C27—C26—H26120.4
C12—C11—C10121.0 (2)C25—C26—H26120.4
C12—C11—H11119.5C26—C27—C28118.2 (2)
C10—C11—H11119.5C26—C27—H27120.9
C11—C12—C13117.3 (2)C28—C27—H27120.9
C11—C12—H12121.3N29—C28—C27123.9 (2)
C13—C12—H12121.3N29—C28—H28118.0
N14—C13—C12128.7 (2)C27—C28—H28118.0
N14—C13—C8107.98 (19)C24—N29—C28117.5 (2)
C12—C13—C8123.3 (2)
C6—N1—C2—C315.0 (3)C8—C13—N14—C150.3 (3)
C6—N1—C2—C7164.76 (19)C13—N14—C15—C70.2 (3)
N1—C2—C3—C16170.6 (2)C8—C7—C15—N140.0 (3)
C7—C2—C3—C169.1 (3)C2—C7—C15—N14176.8 (2)
N1—C2—C3—C46.2 (3)C2—C3—C16—N17173 (3)
C7—C2—C3—C4174.09 (19)C4—C3—C16—N174 (3)
C2—C3—C4—C522.1 (3)C5—C4—C18—C19126.6 (2)
C16—C3—C4—C5154.91 (19)C3—C4—C18—C19110.4 (2)
C2—C3—C4—C18102.6 (2)C5—C4—C18—C2352.5 (3)
C16—C3—C4—C1880.4 (2)C3—C4—C18—C2370.6 (2)
C18—C4—C5—C6104.9 (2)C23—C18—C19—C201.6 (3)
C3—C4—C5—C620.1 (3)C4—C18—C19—C20177.5 (2)
C4—C5—C6—N12.5 (3)C23—C18—C19—Cl1178.79 (17)
C4—C5—C6—C24179.03 (19)C4—C18—C19—Cl12.1 (3)
C2—N1—C6—C517.2 (3)C18—C19—C20—C210.7 (4)
C2—N1—C6—C24159.66 (19)Cl1—C19—C20—C21179.7 (2)
C3—C2—C7—C1519.2 (3)C19—C20—C21—C220.7 (4)
N1—C2—C7—C15161.1 (2)C19—C20—C21—Cl2178.27 (19)
C3—C2—C7—C8164.7 (2)C20—C21—C22—C231.1 (4)
N1—C2—C7—C815.0 (3)Cl2—C21—C22—C23177.89 (19)
C15—C7—C8—C9180.0 (2)C21—C22—C23—C180.1 (4)
C2—C7—C8—C93.3 (4)C19—C18—C23—C221.2 (3)
C15—C7—C8—C130.2 (2)C4—C18—C23—C22177.9 (2)
C2—C7—C8—C13176.5 (2)C5—C6—C24—N29172.5 (2)
C13—C8—C9—C101.2 (3)N1—C6—C24—N294.2 (3)
C7—C8—C9—C10178.6 (2)C5—C6—C24—C257.3 (4)
C8—C9—C10—C110.6 (4)N1—C6—C24—C25176.0 (2)
C9—C10—C11—C120.8 (4)N29—C24—C25—C260.8 (4)
C10—C11—C12—C131.4 (4)C6—C24—C25—C26179.0 (2)
C11—C12—C13—N14178.8 (2)C24—C25—C26—C270.0 (4)
C11—C12—C13—C80.7 (4)C25—C26—C27—C280.5 (4)
C9—C8—C13—N14179.84 (19)C26—C27—C28—N290.2 (4)
C7—C8—C13—N140.3 (2)C25—C24—N29—C281.1 (3)
C9—C8—C13—C120.6 (3)C6—C24—N29—C28178.8 (2)
C7—C8—C13—C12179.3 (2)C27—C28—N29—C240.6 (4)
C12—C13—N14—C15179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N290.85 (3)2.21 (3)2.638 (2)111 (2)
C4—H4···Cl10.982.563.114 (2)116
N14—H14···N17i0.84 (3)2.14 (3)2.937 (3)158 (2)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC25H16Cl2N4
Mr443.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.0158 (9), 10.0261 (12), 14.3653 (17)
α, β, γ (°)72.260 (6), 79.420 (6), 78.224 (6)
V3)1067.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.35 × 0.32 × 0.28
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.895, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
12383, 3707, 3172
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.140, 1.08
No. of reflections3707
No. of parameters288
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.64

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N290.85 (3)2.21 (3)2.638 (2)111 (2)
C4—H4···Cl10.982.563.114 (2)115.7
N14—H14···N17i0.84 (3)2.14 (3)2.937 (3)158 (2)
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

PR thanks V. Ramkumar, Department of Chemistry, IIT, Madras, India, for his help with the data collection.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & &Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds