organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(E)-2-Formyl-1-(4-methyl­phen­yl)ethen­yl]-3-(4-methyl­phen­yl)pyrazole-4-carbaldehyde

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 20 August 2008; accepted 28 August 2008; online 6 September 2008)

In the crystal structure of the title compound, C21H18N2O2, mol­ecules are linked through C—H⋯O inter­actions. Two symmetry-related mol­ecules form a cyclic centrosymmetric R22(20) dimer. These dimers are further connected into chains running along the b axis.

Related literature

For related literature, see: Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147-66.]); Chen & Li (1998[Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572-576.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Londershausen (1996[Londershausen, M. (1996). Pestic. Sci. 48, 269-274.]); Mishra et al. (1998[Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2O2

  • Mr = 330.37

  • Monoclinic, P 21 /n

  • a = 10.2914 (4) Å

  • b = 15.3618 (5) Å

  • c = 11.0271 (4) Å

  • β = 98.778 (1)°

  • V = 1722.90 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.987

  • 24747 measured reflections

  • 6019 independent reflections

  • 3731 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.174

  • S = 1.04

  • 6019 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22A⋯O2i 0.96 2.60 3.378 (2) 139
C5—H5⋯O1ii 0.93 2.23 3.1094 (17) 159
Symmetry codes: (i) -x+3, -y, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Pyrazoles and its derivatives have been reported to possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen,1996) activities. Some of their derivatives have also been successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) properties.

The pyrazole ring A and methylphenyl ring C are near-coplanar with the inter-ring dihedral angle of 17.08 (7)°, whereas the pyrazole ring is twisted from the methylphenyl ring B as can be seen from the dihedral angle of 79.70 (8)°. The propenal group assumes an extended conformation which is evidenced from the torsion angle of [N1—C6—C14—C15] -175.47 (12)°.

The crystal structure is stabilized by C—H···O type of intermolecular interactions. Atom C5 at (x, y, z) donates a proton to atom O1 at (3/2 - x,-1/2 + y,1/2 - z) form a one dimensional C7 chain (Bernstein et al. 1995) running along b axis. The molecules at positions (x, y, z) and (3 - x, -y, -z) form a cyclic centrosymmetric R22(20) dimer through C22—H22A···O2 hydrogen bonds.

Related literature top

For related literature, see: Baraldi et al. (1998); Bernstein et al. (1995); Bruno et al. (1990); Chen & Li (1998); Cottineau et al. (2002); Londershausen (1996); Mishra et al. (1998); Smith et al. (2001).

Experimental top

A mixture of 1-(4-methylphenyl)-1-ethanone N-[(E)-1-phenylethylidene] hydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in an ice bath at 0° C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried with anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was rectystalized in dichloromethane to obtain 3-(4-methylphenyl)-1-[(E)-1-(4-methylphenyl) -3-oxo-1-propenyl]-1H-pyrazole-4-carbaldehyde in 57% yield.

Refinement top

H atoms were positioned geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecules showing the thermal ellipsoids are drawn at 50% probability level. The H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. Perspective view of the crystal packing showing hydrogen-bond interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
1-[(E)-2-Formyl-1-(4-methylphenyl)ethenyl]-3-(4-methylphenyl)pyrazole- 4-carbaldehyde top
Crystal data top
C21H18N2O2F(000) = 696
Mr = 330.37Dx = 1.274 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4580 reflections
a = 10.2914 (4) Åθ = 2.3–32.2°
b = 15.3618 (5) ŵ = 0.08 mm1
c = 11.0271 (4) ÅT = 293 K
β = 98.778 (1)°Block, colorless
V = 1722.90 (11) Å30.30 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
6019 independent reflections
Radiation source: fine-focus sealed tube3731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 32.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 915
Tmin = 0.980, Tmax = 0.987k = 2219
24747 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0833P)2 + 0.2417P]
where P = (Fo2 + 2Fc2)/3
6019 reflections(Δ/σ)max = 0.037
228 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C21H18N2O2V = 1722.90 (11) Å3
Mr = 330.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2914 (4) ŵ = 0.08 mm1
b = 15.3618 (5) ÅT = 293 K
c = 11.0271 (4) Å0.30 × 0.20 × 0.16 mm
β = 98.778 (1)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
6019 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3731 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.987Rint = 0.025
24747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
6019 reflectionsΔρmin = 0.30 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65358 (11)0.31462 (7)0.28639 (13)0.0678 (3)
O21.23915 (18)0.09914 (9)0.0928 (2)0.1340 (9)
N10.93785 (9)0.08384 (7)0.22048 (10)0.0378 (2)
N21.03155 (10)0.13820 (7)0.18711 (10)0.0395 (2)
C31.12006 (11)0.08674 (8)0.14811 (11)0.0367 (3)
C41.08139 (12)0.00258 (8)0.15437 (12)0.0413 (3)
C50.96509 (12)0.00004 (8)0.20099 (12)0.0401 (3)
H50.91440.04780.21630.048*
C60.82656 (11)0.11747 (8)0.26494 (11)0.0367 (3)
C70.75369 (11)0.05214 (8)0.32683 (12)0.0381 (3)
C80.80708 (14)0.01954 (10)0.44021 (14)0.0509 (3)
H80.88840.03960.47840.061*
C90.74082 (17)0.04269 (11)0.49748 (15)0.0593 (4)
H90.77770.06320.57440.071*
C100.62160 (17)0.07477 (10)0.44295 (16)0.0594 (4)
C110.56858 (16)0.04197 (12)0.33110 (18)0.0648 (5)
H110.48760.06270.29310.078*
C120.63277 (14)0.02175 (11)0.27265 (14)0.0527 (4)
H120.59400.04370.19710.063*
C130.5526 (2)0.14496 (13)0.5044 (2)0.0956 (8)
H13A0.46010.14320.47410.143*
H13B0.56670.13560.59150.143*
H13C0.58720.20080.48670.143*
C140.79599 (12)0.20179 (9)0.25103 (13)0.0438 (3)
H140.84540.23690.20660.053*
C150.68876 (13)0.24017 (10)0.30271 (14)0.0487 (3)
H150.64410.20530.35160.058*
C161.23610 (11)0.12790 (9)0.10905 (12)0.0386 (3)
C171.26700 (13)0.21329 (10)0.14214 (14)0.0497 (3)
H171.21590.24310.19110.060*
C181.37242 (14)0.25480 (10)0.10352 (15)0.0527 (4)
H181.39100.31220.12680.063*
C191.45103 (12)0.21259 (10)0.03075 (13)0.0454 (3)
C201.42132 (13)0.12763 (10)0.00071 (14)0.0503 (3)
H201.47360.09780.04860.060*
C211.31552 (13)0.08512 (10)0.03692 (13)0.0475 (3)
H211.29760.02760.01370.057*
C221.56456 (14)0.25876 (12)0.01291 (16)0.0582 (4)
H22A1.64250.22400.00570.087*
H22B1.57830.31400.02770.087*
H22C1.54510.26770.10000.087*
C231.13601 (18)0.08585 (10)0.12661 (19)0.0684 (5)
H231.08490.13460.13620.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0641 (7)0.0420 (7)0.0968 (9)0.0162 (5)0.0110 (6)0.0076 (6)
O20.1215 (13)0.0506 (8)0.263 (2)0.0205 (8)0.1355 (15)0.0071 (11)
N10.0371 (5)0.0308 (5)0.0488 (6)0.0001 (4)0.0169 (4)0.0010 (4)
N20.0387 (5)0.0325 (6)0.0508 (6)0.0020 (4)0.0180 (4)0.0002 (4)
C30.0366 (5)0.0355 (7)0.0399 (6)0.0009 (4)0.0117 (4)0.0008 (5)
C40.0424 (6)0.0353 (7)0.0493 (7)0.0019 (5)0.0171 (5)0.0013 (5)
C50.0433 (6)0.0298 (6)0.0502 (7)0.0006 (5)0.0167 (5)0.0007 (5)
C60.0337 (5)0.0343 (6)0.0442 (6)0.0010 (4)0.0129 (5)0.0013 (5)
C70.0373 (5)0.0332 (6)0.0470 (7)0.0008 (4)0.0166 (5)0.0000 (5)
C80.0489 (7)0.0486 (8)0.0561 (8)0.0020 (6)0.0110 (6)0.0086 (6)
C90.0766 (10)0.0492 (9)0.0572 (9)0.0087 (8)0.0266 (8)0.0136 (7)
C100.0757 (10)0.0409 (8)0.0730 (11)0.0059 (7)0.0476 (8)0.0042 (7)
C110.0556 (8)0.0655 (11)0.0784 (12)0.0242 (8)0.0266 (8)0.0120 (9)
C120.0471 (7)0.0578 (9)0.0545 (8)0.0103 (6)0.0115 (6)0.0000 (7)
C130.1297 (19)0.0620 (12)0.1154 (18)0.0239 (12)0.0837 (15)0.0010 (11)
C140.0411 (6)0.0357 (7)0.0578 (8)0.0027 (5)0.0176 (6)0.0040 (6)
C150.0424 (6)0.0409 (8)0.0647 (9)0.0053 (5)0.0145 (6)0.0028 (6)
C160.0360 (5)0.0412 (7)0.0404 (6)0.0007 (5)0.0113 (5)0.0016 (5)
C170.0474 (7)0.0471 (8)0.0599 (9)0.0060 (6)0.0247 (6)0.0076 (6)
C180.0500 (7)0.0461 (8)0.0661 (9)0.0105 (6)0.0221 (7)0.0054 (7)
C190.0356 (6)0.0564 (9)0.0455 (7)0.0020 (5)0.0102 (5)0.0086 (6)
C200.0445 (7)0.0573 (9)0.0537 (8)0.0025 (6)0.0216 (6)0.0006 (6)
C210.0459 (7)0.0447 (8)0.0556 (8)0.0015 (5)0.0198 (6)0.0052 (6)
C220.0425 (7)0.0709 (11)0.0644 (9)0.0070 (7)0.0180 (6)0.0116 (8)
C230.0755 (11)0.0359 (8)0.1052 (14)0.0070 (7)0.0502 (10)0.0005 (8)
Geometric parameters (Å, º) top
O1—C151.2048 (17)C12—H120.9300
O2—C231.1949 (19)C13—H13A0.9600
N1—C51.3429 (16)C13—H13B0.9600
N1—N21.3679 (13)C13—H13C0.9600
N1—C61.4108 (14)C14—C151.4429 (17)
N2—C31.3263 (15)C14—H140.9300
C3—C41.4332 (18)C15—H150.9300
C3—C161.4726 (16)C16—C171.386 (2)
C4—C51.3734 (16)C16—C211.3896 (17)
C4—C231.449 (2)C17—C181.3806 (18)
C5—H50.9300C17—H170.9300
C6—C141.3364 (18)C18—C191.384 (2)
C6—C71.4804 (16)C18—H180.9300
C7—C121.3771 (19)C19—C201.373 (2)
C7—C81.3807 (19)C19—C221.5072 (17)
C8—C91.382 (2)C20—C211.3864 (18)
C8—H80.9300C20—H200.9300
C9—C101.373 (3)C21—H210.9300
C9—H90.9300C22—H22A0.9600
C10—C111.367 (3)C22—H22B0.9600
C10—C131.507 (2)C22—H22C0.9600
C11—C121.393 (2)C23—H230.9300
C11—H110.9300
C5—N1—N2111.71 (9)C10—C13—H13C109.5
C5—N1—C6127.40 (10)H13A—C13—H13C109.5
N2—N1—C6120.86 (10)H13B—C13—H13C109.5
C3—N2—N1105.69 (10)C6—C14—C15122.12 (12)
N2—C3—C4110.22 (10)C6—C14—H14118.9
N2—C3—C16117.81 (11)C15—C14—H14118.9
C4—C3—C16131.96 (11)O1—C15—C14124.02 (14)
C5—C4—C3104.78 (11)O1—C15—H15118.0
C5—C4—C23119.51 (13)C14—C15—H15118.0
C3—C4—C23135.70 (12)C17—C16—C21117.85 (11)
N1—C5—C4107.59 (11)C17—C16—C3119.56 (11)
N1—C5—H5126.2C21—C16—C3122.58 (12)
C4—C5—H5126.2C18—C17—C16121.04 (12)
C14—C6—N1120.30 (11)C18—C17—H17119.5
C14—C6—C7125.66 (10)C16—C17—H17119.5
N1—C6—C7114.03 (10)C17—C18—C19121.24 (14)
C12—C7—C8118.58 (12)C17—C18—H18119.4
C12—C7—C6121.17 (12)C19—C18—H18119.4
C8—C7—C6120.25 (11)C20—C19—C18117.67 (12)
C7—C8—C9120.59 (14)C20—C19—C22121.35 (13)
C7—C8—H8119.7C18—C19—C22120.99 (14)
C9—C8—H8119.7C19—C20—C21121.80 (12)
C10—C9—C8121.24 (15)C19—C20—H20119.1
C10—C9—H9119.4C21—C20—H20119.1
C8—C9—H9119.4C20—C21—C16120.39 (14)
C11—C10—C9118.04 (14)C20—C21—H21119.8
C11—C10—C13121.26 (18)C16—C21—H21119.8
C9—C10—C13120.70 (19)C19—C22—H22A109.5
C10—C11—C12121.64 (15)C19—C22—H22B109.5
C10—C11—H11119.2H22A—C22—H22B109.5
C12—C11—H11119.2C19—C22—H22C109.5
C7—C12—C11119.90 (15)H22A—C22—H22C109.5
C7—C12—H12120.1H22B—C22—H22C109.5
C11—C12—H12120.1O2—C23—C4127.49 (16)
C10—C13—H13A109.5O2—C23—H23116.3
C10—C13—H13B109.5C4—C23—H23116.3
H13A—C13—H13B109.5
C5—N1—N2—C31.10 (14)C9—C10—C11—C120.4 (2)
C6—N1—N2—C3178.96 (11)C13—C10—C11—C12178.80 (16)
N1—N2—C3—C41.07 (14)C8—C7—C12—C111.4 (2)
N1—N2—C3—C16178.26 (10)C6—C7—C12—C11177.74 (13)
N2—C3—C4—C50.68 (15)C10—C11—C12—C71.0 (3)
C16—C3—C4—C5178.52 (13)N1—C6—C14—C15175.47 (12)
N2—C3—C4—C23179.31 (18)C7—C6—C14—C153.5 (2)
C16—C3—C4—C230.1 (3)C6—C14—C15—O1175.65 (15)
N2—N1—C5—C40.69 (15)N2—C3—C16—C1716.27 (18)
C6—N1—C5—C4178.37 (12)C4—C3—C16—C17162.88 (14)
C3—C4—C5—N10.02 (15)N2—C3—C16—C21162.11 (13)
C23—C4—C5—N1178.89 (14)C4—C3—C16—C2118.7 (2)
C5—N1—C6—C14163.17 (14)C21—C16—C17—C180.7 (2)
N2—N1—C6—C1414.31 (18)C3—C16—C17—C18177.75 (13)
C5—N1—C6—C717.72 (18)C16—C17—C18—C190.2 (2)
N2—N1—C6—C7164.79 (11)C17—C18—C19—C200.7 (2)
C14—C6—C7—C1272.91 (19)C17—C18—C19—C22178.93 (14)
N1—C6—C7—C12108.04 (14)C18—C19—C20—C210.9 (2)
C14—C6—C7—C8107.93 (16)C22—C19—C20—C21178.68 (13)
N1—C6—C7—C871.12 (15)C19—C20—C21—C160.4 (2)
C12—C7—C8—C90.5 (2)C17—C16—C21—C200.5 (2)
C6—C7—C8—C9178.73 (13)C3—C16—C21—C20177.95 (12)
C7—C8—C9—C101.0 (2)C5—C4—C23—O2175.2 (2)
C8—C9—C10—C111.4 (2)C3—C4—C23—O23.3 (4)
C8—C9—C10—C13177.79 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···O2i0.962.603.378 (2)139
C5—H5···O1ii0.932.233.1094 (17)159
Symmetry codes: (i) x+3, y, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H18N2O2
Mr330.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.2914 (4), 15.3618 (5), 11.0271 (4)
β (°) 98.778 (1)
V3)1722.90 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.980, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
24747, 6019, 3731
Rint0.025
(sin θ/λ)max1)0.752
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.174, 1.04
No. of reflections6019
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···O2i0.962.603.378 (2)138.7
C5—H5···O1ii0.932.233.1094 (17)158.5
Symmetry codes: (i) x+3, y, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–66.  CAS PubMed Web of Science Google Scholar
First citationChen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ. 19, 572–576.  CAS Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLondershausen, M. (1996). Pestic. Sci. 48, 269–274.  CrossRef CAS Google Scholar
First citationMishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds