organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1958-o1959

(1′S)-4-(3,4-Di­chloro­phenyl)-1′-(3,5-di­methoxyphenyl)-1,2,3,4-tetra­hydro­naphthalene-2-spiro-2′-pyrrolizidine-3′-spiro-3′′-indoline-1,2′′-dione

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India., and cDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 2 September 2008; accepted 6 September 2008; online 17 September 2008)

In the title compound C37H32Cl2N2O4, the unsubstituted pyrrolidine ring shows a twist conformation whereas the substituted pyrrolidine ring shows an envelope conformation. The dimeth­oxy benzene ring is perpendicular to the tetra­lone ring, making a dihedral angle of 89.94 (5)°. Mol­ecules are linked into centrosymmetric dimers by N—H⋯O hydrogen bonds and the crystal structure is stabilized by C—H⋯π inter­actions and C—H⋯O hydrogen bonds. One meth­oxy group is disordered over two positions with the site occupancy factors of 0.84 (2) and 0.16 (2).

Related literature

For general background, see: Ma & Hecht (2004[Ma, J. & Hecht, S. M. (2004). Chem. Commun. 10, 1190-1191.]); Mitsuaki et al. (1997[Mitsuaki, O., Toshiyuki, K., Fumihiko, W. & Koaru, S. (1997). Chem. Abstr. 17, 22529u,126,578.]); Raghunathan & Suresh Babu (2006[Raghunathan, R. & Suresh Babu, A. R. (2006). Tetrahedron Lett. 47, 9221-9225.]); Reddy & Rao (2006[Reddy, J. S. & Rao, B. V. (2006). J. Org. Chem. 76, 2224-2227.]); Usui et al. (1998[Usui, T., Kondoh, M., Cui, C.-B., Mayumi, T. & Osada, H. (1998). Biochem. J. 333, 543-548.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C37H32Cl2N2O4

  • Mr = 639.55

  • Triclinic, [P \overline 1]

  • a = 10.4475 (3) Å

  • b = 11.3047 (3) Å

  • c = 15.0170 (4) Å

  • α = 87.925 (2)°

  • β = 70.3220 (10)°

  • γ = 70.115 (2)°

  • V = 1564.29 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.852, Tmax = 0.943

  • 41544 measured reflections

  • 10800 independent reflections

  • 7229 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.191

  • S = 1.04

  • 10800 reflections

  • 414 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.01 2.8566 (16) 166
C37—H37CCg1ii 0.93 2.75 3.493 (2) 134
C4—H4⋯O1 0.98 2.56 3.0989 (16) 114
C5—H5⋯O2 0.98 2.27 2.790 (2) 112
C13—H13⋯O2 0.93 2.57 3.129 (2) 119
C23—H23A⋯O1 0.97 2.35 3.015 (2) 125
C22—H22⋯N2 0.98 2.55 3.447 (2) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z+2. Cg1 is the centroid of the C30–C35 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SMART and XPREP. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SMART and XPREP. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SMART and XPREP. Bruker AXS Inc., Madison,Wisconsin, USA.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Spiro compounds represent an important class of naturally occurring substances exhibiting significant biological properties. The spirooxindole system is the core structure of many pharmacological agents and natural alkaloids (Ma & Hecht, 2004). Spirotryprostatin A, a natural alkaloid isolated from the fermentation broth of Aspergillus fumigatus, has been identified as a novel inhibitor of microtubule assembly (Usui et al., 1998). Because of their synthetic and biological potential, considerable interest has been focused on the synthesis of spirooxindole derivatives via 1,3-dipolar cycloaddition reactions (Raghunathan & Suresh Babu, 2006). Chiral polyhydroxy alkaloids show remarkable biological properties. Among these, pyrrolidine alkaloids carrying an aromatic substituent on the ring are of a rare class found in nature (Reddy & Rao, 2006).They are useful in preventing and treating rheumatoid arthritis, asthma, allergies, rhinitis and related diseases (Mitsuaki et al., 1997).

Fig 1 shows the ORTEP (Farrugia, 1997) plot of the title compound. Bond lengths and angles are comparable with other reported values (Allen et al.,1987).

In the molecule the pyrrolidine ring N1/C4—C7 and the tetralone ring C6/C15/C16/C21/C22/C23 exhibit envelope conformations with the asymmetry parameters (Nardelli, 1983) ΔCs(C4)/C(16) = 5.20 (14)/2.64 (15) and with the puckering parameters (Cremer & Pople, 1975) q2 = 0.3779 (16) Å and 0.4787 (17)Å and ϕ2 =212.1 (2)° / 124.3 (3)°. The pyrrolidine ring N1/C1—C4 exhibits a twist conformation with assymetry parameter ΔCs (N1) =16.01 (18), ΔC2 (C1) =62.94 (18) and with the puckering parameters q2 = 0.3901 (18) Å, ϕ2 = 18.9 (3)°.

The sum of bond angles around N1 [329.84°] and that around atom N2 [360.00°] indicate sp3 and sp2 hybridizations. The dimethoxy benzene ring C30—C35 is perpendicular to the tetralone ring C6/C15/C16/C21/C22/C23 and the phenyl ring C16—C21 making a dihedral angle of 89.94 (5)° and 89.98 (6)° respectively. The phenyl and the tetralone rings are almost coplanar with each other making a dihedral angle of 6.53 (5)°.

In the crystal packing, atoms O1 and N2 are involved in intermolecular N—H···O interactions and atoms O1 and O2 are involved in intramolecular C-H···O interactions. The molecules pack into distinct layers facilitated by C-H···π interactions.

Related literature top

For related literature, see: Allen et al. (1987); Cremer & Pople (1975); Farrugia (1997); Ma & Hecht (2004); Mitsuaki et al. (1997); Nardelli (1983); Raghunathan, Suresh & Babu (2006); Reddy & Rao (2006); Usui et al. (1998). Cg1 is the centroid of the C30–C35 ring.

Experimental top

1.0 mol of (2E)-4-(3,4-dichlorophenyl)-2-(3,5-dimethoxybenzylidene)-3, 4-dihydronaphthalen-1(2H)-one (1.0 g), 1.0 mol of isatin (0.33 g) and 1.0 mol of L-proline were refluxed in methanol at 65°C for about 5.0 hrs with constant stirring to afford the cycloadduct. The reaction mixture was monitored by TLC. After the completion of reaction, the reaction mixture was allowed to cool. The solvent was removed by vacuum, the crude solid was purified by column chromatography using n-hexane: ethylacetate (8:2). The cycloadduct was recrystallized by chloroform: methanol (9:1).

Refinement top

Atoms C36 and O3 are disordered over two positions (C36B/C36A) and (O3B/O3A) with refined occupancies of 0.840 (16) and 0.160 (16). H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H = 0.93 or 0.96Å and Uiso(H)= 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed along the c axis.
(1'S)-4-(3,4-Dichlorophenyl)-1'-(3,5-dimethoxyphenyl)- 1,2,3,4-tetrahydronaphthalene-2-spiro-2'-pyrrolizidine- 3'-spiro-3''-indoline-1,2''-dione top
Crystal data top
C37H32Cl2N2O4Z = 2
Mr = 639.55F(000) = 668
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4475 (3) ÅCell parameters from 7586 reflections
b = 11.3047 (3) Åθ = 2.9–30.0°
c = 15.0170 (4) ŵ = 0.25 mm1
α = 87.925 (2)°T = 293 K
β = 70.322 (1)°Prismatic, colourless
γ = 70.115 (2)°0.40 × 0.20 × 0.20 mm
V = 1564.29 (7) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
10800 independent reflections
Radiation source: fine-focus sealed tube7229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and ϕ scanθmax = 32.0°, θmin = 1.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1515
Tmin = 0.852, Tmax = 0.943k = 1616
41544 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1047P)2 + 0.2966P]
where P = (Fo2 + 2Fc2)/3
10800 reflections(Δ/σ)max = 0.002
414 parametersΔρmax = 0.79 e Å3
3 restraintsΔρmin = 0.44 e Å3
Crystal data top
C37H32Cl2N2O4γ = 70.115 (2)°
Mr = 639.55V = 1564.29 (7) Å3
Triclinic, P1Z = 2
a = 10.4475 (3) ÅMo Kα radiation
b = 11.3047 (3) ŵ = 0.25 mm1
c = 15.0170 (4) ÅT = 293 K
α = 87.925 (2)°0.40 × 0.20 × 0.20 mm
β = 70.322 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
10800 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
7229 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.943Rint = 0.026
41544 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0563 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.04Δρmax = 0.79 e Å3
10800 reflectionsΔρmin = 0.44 e Å3
414 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O3A0.354 (4)0.472 (3)1.074 (3)0.0809 (9)0.161 (16)
C36A0.221 (4)0.580 (2)1.132 (2)0.096 (2)0.161 (16)
H36A0.24390.61861.17790.145*0.161 (16)
H36B0.14440.54911.16400.145*0.161 (16)
H36C0.19110.64191.09060.145*0.161 (16)
O3B0.3543 (6)0.4485 (4)1.0667 (4)0.0809 (9)0.839 (16)
C36B0.3052 (11)0.5792 (4)1.1031 (5)0.096 (2)0.839 (16)
H36D0.33370.58361.15700.145*0.839 (16)
H36E0.20150.61481.12180.145*0.839 (16)
H36F0.34800.62581.05460.145*0.839 (16)
C10.40416 (19)0.15566 (17)0.86677 (11)0.0399 (4)
H1A0.46760.14450.89780.048*
H1B0.43910.24310.84170.048*
C20.2476 (2)0.1147 (2)0.93408 (14)0.0529 (5)
H2A0.19450.15810.91450.063*
H2B0.24370.13320.99830.063*
C30.18444 (18)0.02583 (18)0.92877 (11)0.0403 (4)
H3A0.17280.07200.98590.048*
H3B0.09080.04830.92110.048*
C40.29422 (15)0.05502 (14)0.84187 (9)0.0283 (3)
H40.24570.10770.80120.034*
C50.39284 (15)0.11276 (14)0.86608 (9)0.0263 (3)
H50.41630.06940.91930.032*
C60.53615 (14)0.07076 (14)0.77879 (9)0.0250 (3)
C70.52504 (14)0.04945 (14)0.73003 (9)0.0262 (3)
C80.49813 (15)0.01974 (15)0.63454 (9)0.0282 (3)
C90.70601 (16)0.19044 (15)0.60014 (10)0.0308 (3)
C100.83223 (19)0.28541 (17)0.54864 (12)0.0421 (4)
H100.86170.29770.48290.051*
C110.9135 (2)0.36187 (19)0.59893 (15)0.0507 (5)
H111.00000.42610.56630.061*
C120.8683 (2)0.34426 (19)0.69656 (15)0.0518 (5)
H120.92230.39880.72910.062*
C130.74268 (19)0.24584 (17)0.74662 (12)0.0418 (4)
H130.71360.23340.81230.050*
C140.66109 (16)0.16654 (15)0.69812 (10)0.0303 (3)
C150.66684 (15)0.02854 (14)0.81252 (10)0.0286 (3)
C160.80579 (15)0.04095 (15)0.74984 (10)0.0312 (3)
C170.92621 (18)0.00570 (18)0.77891 (13)0.0403 (4)
H170.91720.04220.83620.048*
C181.05792 (19)0.0018 (2)0.72365 (15)0.0496 (5)
H181.13740.02870.74370.059*
C191.07096 (19)0.0547 (2)0.63859 (16)0.0528 (5)
H191.15970.06020.60130.063*
C200.95378 (18)0.09990 (19)0.60787 (13)0.0453 (4)
H200.96480.13470.54990.054*
C210.81919 (16)0.09383 (15)0.66302 (11)0.0331 (3)
C220.69137 (16)0.14085 (15)0.62944 (10)0.0310 (3)
H220.69500.07100.59080.037*
C230.54951 (15)0.17705 (14)0.71400 (10)0.0290 (3)
H23A0.46910.20270.69050.035*
H23B0.54150.24920.75130.035*
C240.69205 (16)0.25062 (16)0.56849 (10)0.0340 (3)
C250.6990 (2)0.35991 (18)0.60064 (13)0.0441 (4)
H250.70520.36630.66050.053*
C260.6968 (2)0.4603 (2)0.54514 (15)0.0501 (4)
H260.70060.53390.56810.060*
C270.68903 (19)0.45170 (19)0.45629 (14)0.0484 (5)
C280.6784 (2)0.3440 (2)0.42390 (12)0.0469 (4)
C290.68005 (19)0.24370 (18)0.47998 (11)0.0408 (4)
H290.67310.17110.45790.049*
C300.32734 (16)0.25188 (15)0.89804 (9)0.0297 (3)
C310.3666 (2)0.29472 (17)0.96688 (12)0.0407 (4)
H310.43170.23810.99150.049*
C320.3092 (2)0.42142 (19)0.99891 (13)0.0502 (5)
C330.2127 (2)0.50766 (17)0.96333 (13)0.0473 (4)
H330.17510.59280.98470.057*
C340.17306 (18)0.46448 (16)0.89500 (12)0.0379 (3)
C350.23008 (17)0.33770 (15)0.86215 (11)0.0344 (3)
H350.20300.31020.81600.041*
C370.0151 (2)0.67044 (19)0.88737 (17)0.0568 (5)
H37A0.05050.71310.85490.085*
H37B0.09050.70560.87400.085*
H37C0.03690.68090.95450.085*
Cl10.69362 (7)0.57669 (6)0.38722 (5)0.0775 (2)
Cl20.66031 (9)0.33098 (7)0.31522 (4)0.0859 (2)
N10.39275 (13)0.06905 (12)0.79190 (8)0.0280 (2)
N20.60572 (14)0.10446 (13)0.56524 (8)0.0320 (3)
H20.61200.10550.50670.038*
O10.39534 (11)0.06372 (12)0.62338 (7)0.0375 (3)
O20.65885 (13)0.01379 (14)0.88883 (8)0.0455 (3)
O40.07684 (15)0.54052 (12)0.85601 (10)0.0506 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O3A0.1439 (18)0.046 (2)0.0818 (16)0.0274 (16)0.0796 (14)0.0059 (13)
C36A0.145 (6)0.0662 (19)0.098 (3)0.029 (3)0.071 (4)0.022 (2)
O3B0.1439 (18)0.046 (2)0.0818 (16)0.0274 (16)0.0796 (14)0.0059 (13)
C36B0.145 (6)0.0662 (19)0.098 (3)0.029 (3)0.071 (4)0.022 (2)
C10.0474 (9)0.0381 (9)0.0344 (7)0.0177 (7)0.0126 (6)0.0138 (6)
C20.0580 (11)0.0504 (11)0.0450 (9)0.0294 (9)0.0016 (8)0.0124 (8)
C30.0336 (8)0.0522 (10)0.0323 (7)0.0200 (7)0.0030 (6)0.0059 (7)
C40.0247 (6)0.0350 (8)0.0252 (6)0.0112 (6)0.0081 (5)0.0060 (5)
C50.0262 (6)0.0302 (7)0.0219 (5)0.0089 (5)0.0089 (5)0.0060 (5)
C60.0228 (6)0.0313 (7)0.0225 (5)0.0093 (5)0.0105 (4)0.0074 (5)
C70.0247 (6)0.0335 (7)0.0205 (5)0.0086 (5)0.0099 (4)0.0063 (5)
C80.0268 (6)0.0402 (8)0.0218 (5)0.0144 (6)0.0112 (5)0.0077 (5)
C90.0296 (7)0.0339 (8)0.0304 (6)0.0135 (6)0.0098 (5)0.0024 (5)
C100.0374 (8)0.0419 (9)0.0388 (8)0.0106 (7)0.0052 (6)0.0078 (7)
C110.0344 (8)0.0421 (10)0.0636 (12)0.0005 (7)0.0134 (8)0.0135 (9)
C120.0436 (10)0.0430 (11)0.0640 (12)0.0009 (8)0.0282 (9)0.0008 (9)
C130.0405 (8)0.0404 (9)0.0402 (8)0.0016 (7)0.0213 (7)0.0033 (7)
C140.0289 (7)0.0317 (7)0.0292 (6)0.0074 (6)0.0119 (5)0.0031 (5)
C150.0268 (6)0.0343 (8)0.0277 (6)0.0102 (6)0.0139 (5)0.0066 (5)
C160.0260 (6)0.0355 (8)0.0350 (7)0.0112 (6)0.0139 (5)0.0066 (6)
C170.0332 (8)0.0479 (10)0.0461 (9)0.0132 (7)0.0230 (7)0.0101 (7)
C180.0274 (8)0.0597 (12)0.0649 (12)0.0129 (8)0.0227 (8)0.0081 (9)
C190.0263 (8)0.0627 (13)0.0673 (12)0.0177 (8)0.0120 (8)0.0120 (10)
C200.0312 (8)0.0552 (11)0.0483 (9)0.0182 (8)0.0102 (7)0.0146 (8)
C210.0270 (7)0.0362 (8)0.0361 (7)0.0118 (6)0.0106 (5)0.0070 (6)
C220.0289 (7)0.0356 (8)0.0300 (6)0.0134 (6)0.0107 (5)0.0106 (5)
C230.0267 (6)0.0334 (7)0.0291 (6)0.0115 (6)0.0120 (5)0.0115 (5)
C240.0289 (7)0.0418 (9)0.0321 (7)0.0147 (6)0.0103 (5)0.0141 (6)
C250.0506 (10)0.0470 (10)0.0461 (9)0.0255 (8)0.0233 (8)0.0173 (7)
C260.0482 (10)0.0470 (11)0.0628 (12)0.0253 (9)0.0214 (9)0.0213 (9)
C270.0332 (8)0.0518 (11)0.0529 (10)0.0125 (8)0.0106 (7)0.0285 (8)
C280.0403 (9)0.0544 (11)0.0338 (8)0.0059 (8)0.0097 (6)0.0153 (7)
C290.0397 (8)0.0461 (10)0.0324 (7)0.0116 (7)0.0111 (6)0.0088 (6)
C300.0292 (7)0.0330 (8)0.0251 (6)0.0094 (6)0.0088 (5)0.0042 (5)
C310.0515 (10)0.0395 (9)0.0372 (8)0.0144 (8)0.0241 (7)0.0052 (6)
C320.0727 (13)0.0442 (10)0.0438 (9)0.0215 (10)0.0311 (9)0.0014 (7)
C330.0615 (11)0.0319 (9)0.0459 (9)0.0118 (8)0.0196 (8)0.0000 (7)
C340.0379 (8)0.0332 (8)0.0382 (8)0.0084 (7)0.0118 (6)0.0045 (6)
C350.0347 (7)0.0347 (8)0.0323 (7)0.0077 (6)0.0142 (6)0.0027 (6)
C370.0566 (12)0.0332 (10)0.0729 (14)0.0035 (9)0.0251 (10)0.0046 (9)
Cl10.0666 (4)0.0733 (4)0.0887 (4)0.0243 (3)0.0271 (3)0.0574 (3)
Cl20.1112 (6)0.0922 (5)0.0393 (3)0.0105 (4)0.0339 (3)0.0171 (3)
N10.0281 (6)0.0322 (6)0.0245 (5)0.0118 (5)0.0091 (4)0.0064 (4)
N20.0337 (6)0.0423 (7)0.0208 (5)0.0128 (6)0.0108 (4)0.0031 (5)
O10.0294 (5)0.0553 (7)0.0268 (5)0.0088 (5)0.0151 (4)0.0099 (5)
O20.0385 (6)0.0698 (9)0.0344 (6)0.0197 (6)0.0209 (5)0.0220 (5)
O40.0527 (8)0.0337 (7)0.0609 (8)0.0021 (6)0.0270 (6)0.0026 (6)
Geometric parameters (Å, º) top
O3A—C36A1.507 (10)C15—O21.2134 (17)
O3A—C321.56 (3)C15—C161.491 (2)
C36A—H36A0.9600C16—C171.398 (2)
C36A—H36B0.9600C16—C211.398 (2)
C36A—H36C0.9600C17—C181.376 (2)
O3B—C321.341 (5)C17—H170.9300
O3B—C36B1.449 (4)C18—C191.375 (3)
C36B—H36D0.9600C18—H180.9300
C36B—H36E0.9600C19—C201.382 (3)
C36B—H36F0.9600C19—H190.9300
C1—N11.4724 (19)C20—C211.395 (2)
C1—C21.522 (3)C20—H200.9300
C1—H1A0.9700C21—C221.507 (2)
C1—H1B0.9700C22—C241.516 (2)
C2—C31.510 (3)C22—C231.5278 (19)
C2—H2A0.9700C22—H220.9800
C2—H2B0.9700C23—H23A0.9700
C3—C41.5315 (19)C23—H23B0.9700
C3—H3A0.9700C24—C251.376 (3)
C3—H3B0.9700C24—C291.384 (2)
C4—N11.4710 (19)C25—C261.382 (3)
C4—C51.532 (2)C25—H250.9300
C4—H40.9800C26—C271.373 (3)
C5—C301.508 (2)C26—H260.9300
C5—C61.5573 (18)C27—C281.379 (3)
C5—H50.9800C27—Cl11.7265 (18)
C6—C231.5323 (19)C28—C291.387 (2)
C6—C151.5342 (19)C28—Cl21.722 (2)
C6—C71.623 (2)C29—H290.9300
C7—N11.4667 (17)C30—C351.387 (2)
C7—C141.520 (2)C30—C311.389 (2)
C7—C81.5558 (18)C31—C321.383 (3)
C8—O11.2215 (18)C31—H310.9300
C8—N21.3475 (19)C32—C331.381 (3)
C9—C101.378 (2)C33—C341.387 (3)
C9—C141.391 (2)C33—H330.9300
C9—N21.399 (2)C34—O41.365 (2)
C10—C111.387 (3)C34—C351.387 (2)
C10—H100.9300C35—H350.9300
C11—C121.379 (3)C37—O41.413 (2)
C11—H110.9300C37—H37A0.9600
C12—C131.388 (3)C37—H37B0.9600
C12—H120.9300C37—H37C0.9600
C13—C141.383 (2)N2—H20.8600
C13—H130.9300
C36A—O3A—C32105.7 (19)C17—C16—C15117.93 (14)
O3A—C36A—H36A109.5C21—C16—C15122.10 (13)
O3A—C36A—H36B109.5C18—C17—C16120.68 (16)
H36A—C36A—H36B109.5C18—C17—H17119.7
O3A—C36A—H36C109.5C16—C17—H17119.7
H36A—C36A—H36C109.5C19—C18—C17119.44 (16)
H36B—C36A—H36C109.5C19—C18—H18120.3
C32—O3B—C36B118.3 (4)C17—C18—H18120.3
O3B—C36B—H36D109.5C18—C19—C20120.84 (16)
O3B—C36B—H36E109.5C18—C19—H19119.6
H36D—C36B—H36E109.5C20—C19—H19119.6
O3B—C36B—H36F109.5C19—C20—C21120.63 (17)
H36D—C36B—H36F109.5C19—C20—H20119.7
H36E—C36B—H36F109.5C21—C20—H20119.7
N1—C1—C2101.74 (14)C20—C21—C16118.46 (15)
N1—C1—H1A111.4C20—C21—C22121.05 (14)
C2—C1—H1A111.4C16—C21—C22120.48 (12)
N1—C1—H1B111.4C21—C22—C24113.74 (12)
C2—C1—H1B111.4C21—C22—C23110.34 (12)
H1A—C1—H1B109.3C24—C22—C23109.85 (13)
C3—C2—C1105.74 (14)C21—C22—H22107.6
C3—C2—H2A110.6C24—C22—H22107.6
C1—C2—H2A110.6C23—C22—H22107.6
C3—C2—H2B110.6C22—C23—C6113.96 (12)
C1—C2—H2B110.6C22—C23—H23A108.8
H2A—C2—H2B108.7C6—C23—H23A108.8
C2—C3—C4105.04 (13)C22—C23—H23B108.8
C2—C3—H3A110.7C6—C23—H23B108.8
C4—C3—H3A110.7H23A—C23—H23B107.7
C2—C3—H3B110.7C25—C24—C29118.75 (15)
C4—C3—H3B110.7C25—C24—C22121.36 (14)
H3A—C3—H3B108.8C29—C24—C22119.85 (16)
N1—C4—C3104.93 (12)C24—C25—C26120.87 (17)
N1—C4—C5104.42 (11)C24—C25—H25119.6
C3—C4—C5113.99 (12)C26—C25—H25119.6
N1—C4—H4111.0C27—C26—C25120.2 (2)
C3—C4—H4111.0C27—C26—H26119.9
C5—C4—H4111.0C25—C26—H26119.9
C30—C5—C4115.92 (12)C26—C27—C28119.70 (16)
C30—C5—C6115.96 (11)C26—C27—Cl1118.85 (17)
C4—C5—C6104.90 (11)C28—C27—Cl1121.44 (15)
C30—C5—H5106.4C27—C28—C29119.89 (17)
C4—C5—H5106.4C27—C28—Cl2121.61 (14)
C6—C5—H5106.4C29—C28—Cl2118.50 (17)
C23—C6—C15107.97 (11)C24—C29—C28120.58 (18)
C23—C6—C5112.44 (11)C24—C29—H29119.7
C15—C6—C5109.81 (10)C28—C29—H29119.7
C23—C6—C7114.45 (11)C35—C30—C31119.11 (15)
C15—C6—C7110.25 (11)C35—C30—C5123.01 (13)
C5—C6—C7101.81 (10)C31—C30—C5117.88 (13)
N1—C7—C14115.92 (12)C32—C31—C30120.16 (16)
N1—C7—C8104.01 (10)C32—C31—H31119.9
C14—C7—C8100.87 (11)C30—C31—H31119.9
N1—C7—C6106.94 (10)O3B—C32—C33125.3 (3)
C14—C7—C6116.68 (11)O3B—C32—C31113.5 (3)
C8—C7—C6111.61 (11)C33—C32—C31121.14 (16)
O1—C8—N2124.93 (12)O3B—C32—O3A8.1 (14)
O1—C8—C7126.47 (13)C33—C32—O3A117.6 (12)
N2—C8—C7108.56 (12)C31—C32—O3A121.3 (11)
C10—C9—C14122.97 (15)C32—C33—C34118.56 (16)
C10—C9—N2127.28 (14)C32—C33—H33120.7
C14—C9—N2109.75 (13)C34—C33—H33120.7
C9—C10—C11117.24 (16)O4—C34—C33123.70 (16)
C9—C10—H10121.4O4—C34—C35115.43 (15)
C11—C10—H10121.4C33—C34—C35120.87 (16)
C12—C11—C10121.10 (16)C30—C35—C34120.16 (15)
C12—C11—H11119.4C30—C35—H35119.9
C10—C11—H11119.4C34—C35—H35119.9
C11—C12—C13120.54 (18)O4—C37—H37A109.5
C11—C12—H12119.7O4—C37—H37B109.5
C13—C12—H12119.7H37A—C37—H37B109.5
C14—C13—C12119.55 (16)O4—C37—H37C109.5
C14—C13—H13120.2H37A—C37—H37C109.5
C12—C13—H13120.2H37B—C37—H37C109.5
C13—C14—C9118.48 (14)C7—N1—C4106.07 (11)
C13—C14—C7132.65 (13)C7—N1—C1118.19 (12)
C9—C14—C7108.85 (12)C4—N1—C1105.58 (11)
O2—C15—C16119.79 (13)C8—N2—C9111.80 (11)
O2—C15—C6121.41 (12)C8—N2—H2124.1
C16—C15—C6118.80 (12)C9—N2—H2124.1
C17—C16—C21119.94 (14)C34—O4—C37117.69 (15)
N1—C1—C2—C333.44 (19)C16—C21—C22—C24149.44 (15)
C1—C2—C3—C413.2 (2)C20—C21—C22—C23155.62 (16)
C2—C3—C4—N112.20 (17)C16—C21—C22—C2325.5 (2)
C2—C3—C4—C5101.42 (17)C21—C22—C23—C655.47 (17)
N1—C4—C5—C30166.65 (10)C24—C22—C23—C6178.36 (12)
C3—C4—C5—C3079.42 (16)C15—C6—C23—C2256.58 (15)
N1—C4—C5—C637.38 (13)C5—C6—C23—C22177.87 (12)
C3—C4—C5—C6151.31 (13)C7—C6—C23—C2266.59 (15)
C30—C5—C6—C2326.34 (16)C21—C22—C24—C2555.9 (2)
C4—C5—C6—C23102.91 (13)C23—C22—C24—C2568.31 (19)
C30—C5—C6—C1593.90 (14)C21—C22—C24—C29126.54 (16)
C4—C5—C6—C15136.86 (12)C23—C22—C24—C29109.24 (16)
C30—C5—C6—C7149.28 (11)C29—C24—C25—C261.2 (3)
C4—C5—C6—C720.04 (13)C22—C24—C25—C26178.79 (16)
C23—C6—C7—N1125.01 (11)C24—C25—C26—C270.6 (3)
C15—C6—C7—N1113.06 (12)C25—C26—C27—C282.2 (3)
C5—C6—C7—N13.44 (13)C25—C26—C27—Cl1177.52 (15)
C23—C6—C7—C14103.36 (13)C26—C27—C28—C292.0 (3)
C15—C6—C7—C1418.58 (15)Cl1—C27—C28—C29177.76 (13)
C5—C6—C7—C14135.08 (11)C26—C27—C28—Cl2177.12 (15)
C23—C6—C7—C811.87 (15)Cl1—C27—C28—Cl23.2 (2)
C15—C6—C7—C8133.80 (11)C25—C24—C29—C281.4 (3)
C5—C6—C7—C8109.70 (11)C22—C24—C29—C28179.06 (15)
N1—C7—C8—O155.59 (19)C27—C28—C29—C240.1 (3)
C14—C7—C8—O1176.04 (15)Cl2—C28—C29—C24178.98 (13)
C6—C7—C8—O159.36 (18)C4—C5—C30—C3535.01 (18)
N1—C7—C8—N2122.56 (12)C6—C5—C30—C3588.67 (17)
C14—C7—C8—N22.12 (15)C4—C5—C30—C31144.70 (14)
C6—C7—C8—N2122.48 (12)C6—C5—C30—C3191.62 (16)
C14—C9—C10—C112.2 (3)C35—C30—C31—C320.0 (3)
N2—C9—C10—C11178.33 (16)C5—C30—C31—C32179.76 (16)
C9—C10—C11—C120.9 (3)C36B—O3B—C32—C333.5 (9)
C10—C11—C12—C132.7 (3)C36B—O3B—C32—C31177.7 (6)
C11—C12—C13—C141.3 (3)C36B—O3B—C32—O3A15 (11)
C12—C13—C14—C91.7 (3)C30—C31—C32—O3B178.6 (3)
C12—C13—C14—C7176.94 (18)C30—C31—C32—C330.2 (3)
C10—C9—C14—C133.6 (2)C30—C31—C32—O3A178.7 (17)
N2—C9—C14—C13176.90 (15)C36A—O3A—C32—O3B129 (12)
C10—C9—C14—C7175.40 (14)C36A—O3A—C32—C3334 (3)
N2—C9—C14—C74.13 (17)C36A—O3A—C32—C31147 (2)
N1—C7—C14—C1365.9 (2)O3B—C32—C33—C34178.1 (4)
C8—C7—C14—C13177.51 (18)C31—C32—C33—C340.6 (3)
C6—C7—C14—C1361.4 (2)O3A—C32—C33—C34179.1 (16)
N1—C7—C14—C9115.28 (13)C32—C33—C34—O4178.83 (18)
C8—C7—C14—C93.71 (15)C32—C33—C34—C350.7 (3)
C6—C7—C14—C9117.37 (13)C31—C30—C35—C340.1 (2)
C23—C6—C15—O2150.34 (15)C5—C30—C35—C34179.63 (14)
C5—C6—C15—O227.4 (2)O4—C34—C35—C30179.11 (14)
C7—C6—C15—O283.97 (17)C33—C34—C35—C300.5 (3)
C23—C6—C15—C1629.28 (17)C14—C7—N1—C4158.89 (11)
C5—C6—C15—C16152.20 (13)C8—C7—N1—C491.38 (12)
C7—C6—C15—C1696.41 (15)C6—C7—N1—C426.84 (13)
O2—C15—C16—C174.5 (2)C14—C7—N1—C140.76 (17)
C6—C15—C16—C17175.84 (14)C8—C7—N1—C1150.48 (13)
O2—C15—C16—C21177.35 (16)C6—C7—N1—C191.30 (15)
C6—C15—C16—C212.3 (2)C3—C4—N1—C7160.36 (11)
C21—C16—C17—C181.1 (3)C5—C4—N1—C740.16 (12)
C15—C16—C17—C18179.31 (17)C3—C4—N1—C134.16 (15)
C16—C17—C18—C190.6 (3)C5—C4—N1—C186.04 (13)
C17—C18—C19—C200.3 (3)C2—C1—N1—C7160.27 (14)
C18—C19—C20—C210.6 (3)C2—C1—N1—C441.88 (16)
C19—C20—C21—C160.1 (3)O1—C8—N2—C9178.40 (14)
C19—C20—C21—C22178.98 (18)C7—C8—N2—C90.21 (17)
C17—C16—C21—C200.8 (2)C10—C9—N2—C8176.74 (16)
C15—C16—C21—C20178.88 (16)C14—C9—N2—C82.76 (18)
C17—C16—C21—C22178.12 (15)C33—C34—O4—C370.2 (3)
C15—C16—C21—C220.0 (2)C35—C34—O4—C37179.71 (17)
C20—C21—C22—C2431.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.012.8566 (16)166
C37—H37C···Cg1ii0.932.753.493 (2)134
C4—H4···O10.982.563.0989 (16)114
C5—H5···O20.982.272.790 (2)112
C13—H13···O20.932.573.129 (2)119
C23—H23A···O10.972.353.015 (2)125
C22—H22···N20.982.553.447 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC37H32Cl2N2O4
Mr639.55
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.4475 (3), 11.3047 (3), 15.0170 (4)
α, β, γ (°)87.925 (2), 70.322 (1), 70.115 (2)
V3)1564.29 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.852, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
41544, 10800, 7229
Rint0.026
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.191, 1.04
No. of reflections10800
No. of parameters414
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.44

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.012.8566 (16)166
C37—H37C···Cg1ii0.932.753.493 (2)134
C4—H4···O10.982.563.0989 (16)114
C5—H5···O20.982.272.790 (2)112
C13—H13···O20.932.573.129 (2)119
C23—H23A···O10.972.353.015 (2)125
C22—H22···N20.982.553.447 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+2.
 

Acknowledgements

ETSK thanks Professor M. N. Ponnuswamy and Professor D. Velmurugan, Department of Crystallography and Biophysics, University of Madras, India, for their guidance and valuable suggestions. ETSK also thanks SRM Management for their support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SMART and XPREP. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMa, J. & Hecht, S. M. (2004). Chem. Commun. 10, 1190–1191.  Web of Science CrossRef Google Scholar
First citationMitsuaki, O., Toshiyuki, K., Fumihiko, W. & Koaru, S. (1997). Chem. Abstr. 17, 22529u,126,578.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaghunathan, R. & Suresh Babu, A. R. (2006). Tetrahedron Lett. 47, 9221–9225.  Google Scholar
First citationReddy, J. S. & Rao, B. V. (2006). J. Org. Chem. 76, 2224–2227.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsui, T., Kondoh, M., Cui, C.-B., Mayumi, T. & Osada, H. (1998). Biochem. J. 333, 543–548.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1958-o1959
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds