metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(perchlorato-κO)tetra­kis(1H-pyrazole-κN2)copper(II)

aChemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany, and bInstitut für Organische Chemie, Technische Universität Clausthal, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

(Received 8 September 2008; accepted 18 September 2008; online 24 September 2008)

The title compound, [Cu(ClO4)2(C3H4N2)4], was obtained unexpectedly by the reaction of copper(II) perchlorate hexa­hydrate with equimolar amounts of 1-chloro-1-nitro-2,2,2-tripyrazolylethane in methanol solution. The crystal structure comprises octa­hedrally coordinated Cu2+ ions, located on an inversion centre, with four pyrazole ligands in the equatorial plane. The average Cu—N distance is 2.000 (1) Å. Two perchlorate ions are coordinated to copper in trans positions [Cu—O = 2.4163 (11) Å].

Related literature

For general background on weakly coordinating anions, see: Gowda et al. (1984[Gowda, N. M. N., Naikar, S. B. & Reddy, G. K. N. (1984). Adv. Inorg. Chem. Radiochem. 28, 255-299.]); Rosenthal (1973[Rosenthal, M. R. (1973). J. Chem. Educ. 50, 331-334.]); Strauss (1993[Strauss, S. H. (1993). Chem. Rev. 93, 927-942.]). For previous literature on the title compound, see: Misra et al. (1998[Misra, B. N., Kripal, R. & Narayan, A. (1998). Indian J. Pure Appl. Phys. 36, 412-414.]); Reedijk (1969[Reedijk, J. (1969). Rec. Trav. Chim. Pays-Bas, 88, 1451-1470.]); Sastry et al. (1986[Sastry, B. A., Balaiah, B., Reddy, K. V. G., Madhu, B., Ponticelli, G., Massacssi, M. & Puggioni, G. (1986). Indian J. Pure Appl. Phys. 24, 460-462.]). For 1-chloro-1-nitro-2,2,2-tripyrazolylethane, see: Zapol'skii & Kaufmann (2008[Zapol'skii, V. & Kaufmann, D. (2008). Unpublished work.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(ClO4)2(C3H4N2)4]

  • Mr = 534.77

  • Monoclinic, C 2/c

  • a = 14.1537 (11) Å

  • b = 9.9483 (5) Å

  • c = 15.7414 (12) Å

  • β = 114.946 (6)°

  • V = 2009.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 173 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.606, Tmax = 0.881

  • 9046 measured reflections

  • 2687 independent reflections

  • 2518 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 0.99

  • 2687 reflections

  • 174 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3i 0.81 (3) 2.25 (3) 3.0517 (19) 171 (2)
N2—H2N⋯O4i 0.81 (3) 2.58 (2) 3.0722 (17) 121 (2)
N4—H4N⋯O4i 0.79 (2) 2.24 (2) 2.8124 (17) 129.3 (17)
N4—H4N⋯O2ii 0.79 (2) 2.50 (2) 3.1580 (17) 141.5 (17)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

Today it is generally recognized that the classical "noncoordinating" anions such as ClO4-, BF4- or PF6- can coordinate to metal ions from all regions of the periodic table (Strauss, 1993; Rosenthal, 1973; Gowda et al. , 1984). In the course of an investigation on the coordination chemistry of various azolyl-nitrochloroalkanes (Zapol'skii & Kaufmann, 2008), we studied the reaction of copper(II) perchlorate hexahydrate with equimolar amounts of 1-chloro-1-nitro-2,2,2-tris(pyrazolyl)ethane, Cl(NO2)CH—C(C3H3N2)3, in methanol solution. Quite unexpectedly, complete degradation of the starting material took place during the course of this reaction. Direct crystallization from the concentrated reaction mixture afforded dark blue single-crystals. An X-ray structure determination revealed the presence of the title compound, trans-bis(perchlorato)-tetrakis(pyrazole)copper(II). The formation of free pyrazol can only be explained by a solvolytic degradation of the starting material. This degradation must take place on a large extent as the isolated yield of the title compound was 64%. The complex trans-bis(perchlorato)-tetrakis(pyrazole)copper(II) has been mentioned three times before in the earlier literature, but structural characterization was lacking until now. Reedijk (1969) first decribed the preparation of the title compound by direct treatment of copper perchlorate with pyrazole. The compound was characterized and identified by elemental analysis and physical measurements. Infrared spectroscopy evidently showed coordination of the perchlorate anions to the central copper(2+) ion. This was now confirmed by the present X-ray diffraction study. The structure of the title compound is shown below. Dimensions are available in the archived CIF. In the solid state, the title compound comprises octahedral molecules in which the central Cu2+ ion is surrounded by four neutral pyrazole ligand in the equatorial plane. The average Cu—N distance is 2.000 (1) Å. Two perchlorate ions are coordinated to copper in the trans positions (Cu—O 2.4163 (11) Å).

Related literature top

For related literature, see: Gowda et al. (1984); Misra et al. (1998); Reedijk (1969); Rosenthal (1973); Sastry et al. (1986); Strauss (1993); Zapol'skii & Kaufmann (2008). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

The title compound was obtained as an unexpected product from a reaction of copper(II) perchlorate hexahydrate with equimolar amounts of 1-chloro-1-nitro-2,2,2-tris(pyrazolyl)ethane, Cl(NO2)CH—C(C3H3N2)3, in methanol solution. Solid 1-chloro-1-nitro-2,2,2-tris(pyrazolyl)ethane (0.56 g) was added to a solution of Cu(ClO4)2 x 6H2O in methanol (50 ml) and the mixture was stirred at ambient temperature for 2 h. The solution was concentrated under vacuum to a total volume of ca 15 ml and allowed to stand undisturbed at room temperature. After several days, dark blue single-crystals of the title compound were obtained in 64% yield (0.45 g, based on Cu(ClO4)2 x 6H2O). Anal. calcd for C12H16Cl2CuN8O8 (534.75 g mol-1): C 26.85, H 3.04; found: C 26.11, H 3.18%.

Refinement top

All H atoms were freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels. H-Atom radii are arbitrary.
trans-Bis(perchlorato-κO)tetrakis(1H-pyrazole-κN2)copper(II) top
Crystal data top
[Cu(ClO4)2(C3H4N2)4]F(000) = 1084
Mr = 534.77Dx = 1.767 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 16684 reflections
a = 14.1537 (11) Åθ = 2.6–29.5°
b = 9.9483 (5) ŵ = 1.41 mm1
c = 15.7414 (12) ÅT = 173 K
β = 114.946 (6)°Prism, green
V = 2009.7 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
2687 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2518 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.017
Detector resolution: 6.67 pixels mm-1θmax = 29.2°, θmin = 2.6°
rotation method scansh = 1919
Absorption correction: integration
(X-RED; Stoe & Cie, 2001)
k = 1313
Tmin = 0.606, Tmax = 0.881l = 2121
9046 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068All H-atom parameters refined
S = 0.99 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.7635P]
where P = (Fo2 + 2Fc2)/3
2687 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(ClO4)2(C3H4N2)4]V = 2009.7 (3) Å3
Mr = 534.77Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.1537 (11) ŵ = 1.41 mm1
b = 9.9483 (5) ÅT = 173 K
c = 15.7414 (12) Å0.40 × 0.30 × 0.20 mm
β = 114.946 (6)°
Data collection top
Stoe IPDS 2T
diffractometer
2687 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2001)
2518 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.881Rint = 0.017
9046 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068All H-atom parameters refined
S = 0.99Δρmax = 0.37 e Å3
2687 reflectionsΔρmin = 0.34 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75000.75000.50000.01532 (8)
Cl20.90323 (2)1.06663 (3)0.56166 (2)0.01900 (9)
O10.98696 (11)1.03113 (16)0.64859 (9)0.0454 (3)
O20.94232 (9)1.14470 (12)0.50756 (8)0.0312 (2)
O30.82438 (10)1.13865 (14)0.57726 (10)0.0412 (3)
O40.85586 (8)0.94534 (11)0.51056 (8)0.0283 (2)
N10.87702 (9)0.63692 (11)0.55955 (8)0.0191 (2)
N20.87750 (10)0.50290 (13)0.54924 (11)0.0299 (3)
N30.74610 (9)0.77577 (12)0.62524 (8)0.0186 (2)
N40.67422 (9)0.71389 (13)0.64642 (9)0.0218 (2)
C10.97459 (11)0.66995 (15)0.61591 (11)0.0254 (3)
C21.03738 (12)0.55634 (17)0.64268 (14)0.0364 (4)
C30.97222 (14)0.45238 (18)0.59796 (17)0.0435 (5)
C40.80535 (11)0.84451 (16)0.70182 (10)0.0241 (3)
C50.77179 (12)0.82591 (17)0.77210 (10)0.0274 (3)
C60.68758 (13)0.74111 (16)0.73397 (11)0.0262 (3)
H2N0.825 (2)0.460 (3)0.5206 (17)0.045 (6)*
H4N0.6330 (15)0.666 (2)0.6088 (14)0.023 (4)*
H10.9926 (19)0.764 (2)0.6332 (17)0.033 (5)*
H21.107 (2)0.554 (2)0.6810 (17)0.047 (6)*
H30.984 (2)0.356 (3)0.599 (2)0.063 (8)*
H40.8596 (16)0.894 (2)0.7022 (15)0.032 (5)*
H50.7974 (19)0.866 (3)0.8298 (18)0.048 (6)*
H60.6457 (18)0.705 (2)0.7603 (17)0.042 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01307 (11)0.01805 (12)0.01317 (11)0.00047 (7)0.00391 (8)0.00027 (7)
Cl20.02026 (15)0.01988 (15)0.01697 (14)0.00576 (10)0.00797 (11)0.00313 (10)
O10.0377 (7)0.0568 (8)0.0245 (6)0.0117 (6)0.0037 (5)0.0078 (6)
O20.0409 (6)0.0281 (5)0.0297 (6)0.0113 (5)0.0197 (5)0.0010 (4)
O30.0382 (6)0.0409 (7)0.0548 (8)0.0038 (5)0.0296 (6)0.0205 (6)
O40.0268 (5)0.0224 (5)0.0380 (6)0.0107 (4)0.0158 (5)0.0110 (4)
N10.0174 (5)0.0182 (5)0.0195 (5)0.0002 (4)0.0057 (4)0.0006 (4)
N20.0197 (6)0.0200 (6)0.0445 (8)0.0023 (5)0.0080 (5)0.0083 (5)
N30.0173 (5)0.0216 (5)0.0167 (5)0.0016 (4)0.0070 (4)0.0004 (4)
N40.0205 (5)0.0250 (5)0.0215 (6)0.0042 (4)0.0104 (5)0.0016 (5)
C10.0183 (6)0.0208 (6)0.0296 (7)0.0009 (5)0.0028 (5)0.0002 (5)
C20.0189 (7)0.0262 (7)0.0507 (10)0.0035 (6)0.0015 (6)0.0011 (7)
C30.0273 (8)0.0215 (7)0.0708 (13)0.0049 (6)0.0098 (8)0.0038 (8)
C40.0218 (6)0.0291 (7)0.0180 (6)0.0042 (5)0.0051 (5)0.0017 (5)
C50.0278 (7)0.0359 (8)0.0156 (6)0.0015 (6)0.0063 (5)0.0018 (5)
C60.0272 (7)0.0327 (8)0.0216 (6)0.0031 (5)0.0131 (6)0.0044 (5)
Geometric parameters (Å, º) top
Cu1—N1i1.9887 (11)N3—C41.3310 (18)
Cu1—N11.9887 (11)N3—N41.3460 (16)
Cu1—N3i2.0117 (12)N4—C61.3373 (19)
Cu1—N32.0117 (12)N4—H4N0.79 (2)
Cu1—O4i2.4164 (10)C1—C21.389 (2)
Cu1—O42.4164 (10)C1—H10.98 (2)
Cl2—O11.4261 (12)C2—C31.367 (2)
Cl2—O21.4255 (11)C2—H20.91 (3)
Cl2—O31.4318 (12)C3—H30.97 (3)
Cl2—O41.4483 (10)C4—C51.388 (2)
N1—C11.3299 (17)C4—H40.91 (2)
N1—N21.3435 (17)C5—C61.375 (2)
N2—C31.331 (2)C5—H50.91 (3)
N2—H2N0.81 (3)C6—H60.93 (2)
N1i—Cu1—N1180.000 (1)C3—N2—H2N125.5 (18)
N1i—Cu1—N3i90.18 (5)N1—N2—H2N123.2 (18)
N1—Cu1—N3i89.82 (5)C4—N3—N4105.30 (11)
N1i—Cu1—N389.82 (5)C4—N3—Cu1133.31 (10)
N1—Cu1—N390.18 (5)N4—N3—Cu1121.37 (9)
N3i—Cu1—N3180.0C6—N4—N3111.69 (12)
N1i—Cu1—O4i90.65 (4)C6—N4—H4N129.1 (14)
N1—Cu1—O4i89.35 (4)N3—N4—H4N119.1 (14)
N3i—Cu1—O4i95.89 (4)N1—C1—C2110.67 (13)
N3—Cu1—O4i84.11 (4)N1—C1—H1119.8 (14)
N1i—Cu1—O489.35 (4)C2—C1—H1129.5 (14)
N1—Cu1—O490.65 (4)C3—C2—C1104.66 (14)
N3i—Cu1—O484.11 (4)C3—C2—H2128.5 (16)
N3—Cu1—O495.89 (4)C1—C2—H2126.8 (16)
O4i—Cu1—O4180.00 (6)N2—C3—C2107.94 (15)
O1—Cl2—O2109.46 (8)N2—C3—H3120.5 (16)
O1—Cl2—O3110.60 (9)C2—C3—H3131.5 (16)
O2—Cl2—O3110.90 (8)N3—C4—C5110.90 (13)
O1—Cl2—O4109.23 (8)N3—C4—H4119.4 (13)
O2—Cl2—O4109.12 (7)C5—C4—H4129.6 (13)
O3—Cl2—O4107.49 (7)C6—C5—C4105.01 (13)
Cl2—O4—Cu1146.78 (7)C6—C5—H5127.3 (15)
C1—N1—N2105.61 (11)C4—C5—H5127.6 (15)
C1—N1—Cu1130.74 (10)N4—C6—C5107.09 (13)
N2—N1—Cu1123.64 (9)N4—C6—H6122.9 (15)
C3—N2—N1111.12 (13)C5—C6—H6130.0 (15)
O1—Cl2—O4—Cu171.01 (15)N1—Cu1—N3—C470.96 (14)
O2—Cl2—O4—Cu1169.36 (12)N3i—Cu1—N3—C40 (100)
O3—Cl2—O4—Cu149.03 (15)O4i—Cu1—N3—C4160.28 (14)
N1i—Cu1—O4—Cl281.05 (13)O4—Cu1—N3—C419.72 (14)
N1—Cu1—O4—Cl298.95 (13)N1i—Cu1—N3—N472.95 (11)
N3i—Cu1—O4—Cl2171.30 (14)N1—Cu1—N3—N4107.05 (11)
N3—Cu1—O4—Cl28.70 (14)N3i—Cu1—N3—N40 (100)
O4i—Cu1—O4—Cl2111 (100)O4i—Cu1—N3—N417.73 (10)
N1i—Cu1—N1—C1140 (100)O4—Cu1—N3—N4162.27 (10)
N3i—Cu1—N1—C1108.25 (14)C4—N3—N4—C60.55 (16)
N3—Cu1—N1—C171.75 (14)Cu1—N3—N4—C6177.94 (10)
O4i—Cu1—N1—C1155.85 (14)N2—N1—C1—C20.78 (19)
O4—Cu1—N1—C124.15 (14)Cu1—N1—C1—C2178.35 (12)
N1i—Cu1—N1—N239 (100)N1—C1—C2—C30.9 (2)
N3i—Cu1—N1—N272.76 (12)N1—N2—C3—C20.2 (2)
N3—Cu1—N1—N2107.24 (12)C1—C2—C3—N20.6 (2)
O4i—Cu1—N1—N223.13 (12)N4—N3—C4—C50.38 (17)
O4—Cu1—N1—N2156.87 (12)Cu1—N3—C4—C5177.85 (11)
C1—N1—N2—C30.4 (2)N3—C4—C5—C60.09 (18)
Cu1—N1—N2—C3178.83 (14)N3—N4—C6—C50.51 (17)
N1i—Cu1—N3—C4109.04 (14)C4—C5—C6—N40.24 (17)
Symmetry code: (i) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.81 (3)2.25 (3)3.0517 (19)171 (2)
N2—H2N···O4i0.81 (3)2.58 (2)3.0722 (17)121 (2)
N4—H4N···O4i0.79 (2)2.24 (2)2.8124 (17)129.3 (17)
N4—H4N···O2ii0.79 (2)2.50 (2)3.1580 (17)141.5 (17)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)2(C3H4N2)4]
Mr534.77
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)14.1537 (11), 9.9483 (5), 15.7414 (12)
β (°) 114.946 (6)
V3)2009.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2001)
Tmin, Tmax0.606, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
9046, 2687, 2518
Rint0.017
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 0.99
No. of reflections2687
No. of parameters174
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.34

Computer programs: X-AREA (Stoe & Cie, 2001), X-RED (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.81 (3)2.25 (3)3.0517 (19)171 (2)
N2—H2N···O4i0.81 (3)2.58 (2)3.0722 (17)121 (2)
N4—H4N···O4i0.79 (2)2.24 (2)2.8124 (17)129.3 (17)
N4—H4N···O2ii0.79 (2)2.50 (2)3.1580 (17)141.5 (17)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x1/2, y1/2, z.
 

Acknowledgements

Financial support of this work by the Otto-von-Guericke-Universität Magdeburg and the Technische Universität Clausthal is gratefully acknowledged. Special thanks are due to Christian Meyer, TU Clausthal, for providing a sample of 1-chloro-1-nitro-2,2,2-tris(pyrazolyl)ethane.

References

First citationGowda, N. M. N., Naikar, S. B. & Reddy, G. K. N. (1984). Adv. Inorg. Chem. Radiochem. 28, 255–299.  CrossRef CAS Web of Science Google Scholar
First citationMisra, B. N., Kripal, R. & Narayan, A. (1998). Indian J. Pure Appl. Phys. 36, 412–414.  CAS Google Scholar
First citationReedijk, J. (1969). Rec. Trav. Chim. Pays-Bas, 88, 1451–1470.  CrossRef CAS Google Scholar
First citationRosenthal, M. R. (1973). J. Chem. Educ. 50, 331–334.  CrossRef CAS Google Scholar
First citationSastry, B. A., Balaiah, B., Reddy, K. V. G., Madhu, B., Ponticelli, G., Massacssi, M. & Puggioni, G. (1986). Indian J. Pure Appl. Phys. 24, 460–462.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStrauss, S. H. (1993). Chem. Rev. 93, 927–942.  CrossRef CAS Web of Science Google Scholar
First citationZapol'skii, V. & Kaufmann, D. (2008). Unpublished work.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds