metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­tetra­chloridotin(IV)–diglyme (1/2)

aDepartamento de Quimica, Universidade Federal de Minas Gerais, UFMG, Avenida Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 16 September 2008; accepted 17 September 2008; online 20 September 2008)

In the title 1:2 adduct, [SnCl4(H2O)2]·2C6H14O3, the SnIV atom (site symmetry 2) adopts a cis-SnO2Cl4 octa­hedral geometry. In the crystal structure, O—H⋯O hydrogen bonds lead to associations of one metal complex and two diglyme mol­ecules.

Related literature

For related structures, see: Valle et al. (1984[Valle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81-84.]); Hough et al. (1986[Hough, E., Nicholson, D. G. & Vasudevan, A. K. (1986). J. Chem. Soc. Dalton Trans. pp. 2335-2337.]); Aza­dmehr et al. (2001[Azadmehr, A., Amini, M. M., Tadjarodi, A., Taeb, A. & Ng, S. W. (2001). Main Group Met. Chem. 24, 459-460.]). For further synthetic details, see: Hutton & Oakes (1976[Hutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123-136.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For bond valence sum calculations, see: Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]).

[Scheme 1]

Experimental

Crystal data
  • [SnCl4(H2O)2]·2C6H14O3

  • Mr = 564.86

  • Orthorhombic, P b c n

  • a = 8.4023 (2) Å

  • b = 17.1528 (3) Å

  • c = 15.9612 (4) Å

  • V = 2300.38 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 120 (2) K

  • 0.55 × 0.43 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.472, Tmax = 0.795

  • 20197 measured reflections

  • 2643 independent reflections

  • 2292 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.050

  • S = 1.04

  • 2643 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1 2.1343 (13)
Sn1—Cl1 2.3772 (4)
Sn1—Cl2 2.3853 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H2⋯O2 0.77 (2) 1.88 (2) 2.6503 (18) 175 (2)
O1—H1⋯O4 0.82 (2) 1.91 (2) 2.7296 (18) 175 (2)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK, and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), (Fig. 1) complements related adducts containing the same metal complex accompanied by various crown ethers (Valle et al., 1984; Hough et al., 1986; Azadmehr et al., 2001).

In (I), the tin(IV) atom lies on a crystallographic twofold rotation axis, and bonds to two water molecules and four chloride ions, with the water O atoms in cis conformation {O1—Sn1—O1i = 82.72 (8)°; i = -x, y, 3/2 - z]. Overall, a distorted octahedral coordination arises for the metal (Table 1). The bond valence sum (BVS) (Brese & O'Keeffe, 1991) for tin is 4.09 (expected value = 4.00).

In the crystal, the Sn(H2O)2Cl4 moiety links to two adjacent C6H14O3 (diglyme) molecules by way of O—H···O hydrogen bonds (Table 2), with each water molecule making two such bonds to the same diglyme species (Fig. 2). This hydrogen bonding pattern may correlate with the fact that the O—C—C—O torsion angles reflect gauche conformations about the C2—C3 and C4—C5 bonds [O2—C2—C3—O3 = 65.6 (2)°; O3—C4—C5—O4 = -64.9 (2)°], whereas the four C—C—O—C conformations are trans. Otherwise, the geometrical paramaters for (I) may be regarded as normal (Allen et al., 1987).

Related literature top

For related structures, see: Valle et al. (1984); Hough et al. (1986); Azadmehr et al. (2001). For further synthetic details, see: Hutton & Oakes (1976). For reference structural data, see: Allen et al. (1987). For bond valence sum calculations, see: Brese & O'Keeffe (1991).

Experimental top

Air-stable, colourless slabs of (I) were isolated from the slow evaporation of a methanolic solution (20 ml) containing 0.1 mmol C l3SnCH2CH2CO2H (Hutton & Oakes, 1976) and 0.1 mmol diglyme. M.P. 353–355 K. IR (KBr): 3500–2500, 1363, 1471, 1454, 1354,1287, 1250, 1141, 1102, 1079, 1105, 860, 834, 701, 617 cm-1 Anal: Calc: C 25.52; H 5.71%. Found: C 25.23; H 5.85%.

Refinement top

The water H atoms were located in a difference map and their positions were freely refined with the constraint Uiso(H) = 1.2Ueq(O). The C-bound H atoms were placed in calculated positions (C—H = 0.98–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids. The H atoms are drawn as spheres of arbitrary radius and the hydrogen bonds are shown as double-dashed lines. Symmetry code: (i) -x, y, 3/2 - z.
[Figure 2] Fig. 2. Unit cell packing for (I) showing the isolated hydrogen bonded assembiles of one metal complex and two diglyme molecules. Symmetry code: (i) -x, y, 3/2 - z. The C-bound H atoms are omitted for clarity.
Diaquatetrachloridotin(IV)–diglyme (1/2) top
Crystal data top
[SnCl4(H2O)2]·2C6H14O3F(000) = 1144
Mr = 564.86Dx = 1.631 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 10481 reflections
a = 8.4023 (2) Åθ = 2.9–27.5°
b = 17.1528 (3) ŵ = 1.61 mm1
c = 15.9612 (4) ÅT = 120 K
V = 2300.38 (9) Å3Slab, colourless
Z = 40.55 × 0.43 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2643 independent reflections
Radiation source: fine-focus sealed tube2292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scansθmax = 27.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.472, Tmax = 0.795k = 1922
20197 measured reflectionsl = 1720
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap and geom
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0206P)2 + 1.2513P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2643 reflectionsΔρmax = 0.56 e Å3
121 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: (SHELXL97; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00095 (17)
Crystal data top
[SnCl4(H2O)2]·2C6H14O3V = 2300.38 (9) Å3
Mr = 564.86Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 8.4023 (2) ŵ = 1.61 mm1
b = 17.1528 (3) ÅT = 120 K
c = 15.9612 (4) Å0.55 × 0.43 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
2643 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2292 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.795Rint = 0.037
20197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.56 e Å3
2643 reflectionsΔρmin = 0.50 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00000.165876 (9)0.75000.01280 (7)
Cl10.27717 (5)0.17456 (3)0.72161 (3)0.02257 (11)
Cl20.04156 (6)0.07342 (3)0.85946 (3)0.02251 (11)
O10.02883 (16)0.25927 (8)0.83704 (9)0.0201 (3)
H10.023 (2)0.2999 (14)0.8351 (14)0.024*
H20.107 (3)0.2655 (12)0.8617 (14)0.024*
C10.3671 (3)0.19896 (12)0.94703 (16)0.0380 (6)
H1A0.34440.15870.90510.057*
H1B0.31990.18391.00080.057*
H1C0.48260.20450.95350.057*
C20.3303 (2)0.33246 (10)0.97905 (12)0.0211 (4)
H2A0.44540.33510.99200.025*
H2B0.27200.32201.03180.025*
C30.2759 (2)0.40787 (10)0.94202 (13)0.0228 (4)
H3A0.30580.45160.97930.027*
H3B0.32730.41610.88690.027*
C40.0482 (2)0.46917 (10)0.88487 (13)0.0254 (4)
H4A0.10210.47140.82980.030*
H4B0.06900.51870.91480.030*
C50.1273 (2)0.45811 (11)0.87301 (13)0.0257 (4)
H5A0.17980.45200.92810.031*
H5B0.17330.50440.84490.031*
C60.3192 (2)0.38022 (12)0.80483 (15)0.0327 (5)
H6A0.33360.33370.77000.049*
H6B0.35870.42610.77470.049*
H6C0.37860.37400.85730.049*
O20.30068 (16)0.27173 (7)0.92018 (9)0.0260 (3)
O30.10705 (14)0.40525 (7)0.93230 (8)0.0210 (3)
O40.15401 (14)0.39017 (7)0.82313 (8)0.0226 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01400 (9)0.00920 (10)0.01519 (11)0.0000.00062 (6)0.000
Cl10.0149 (2)0.0241 (2)0.0287 (3)0.00062 (16)0.00141 (18)0.00129 (19)
Cl20.0303 (2)0.0155 (2)0.0217 (3)0.00401 (17)0.00013 (18)0.00507 (18)
O10.0210 (7)0.0128 (6)0.0265 (8)0.0060 (5)0.0101 (6)0.0061 (6)
C10.0429 (13)0.0233 (11)0.0477 (15)0.0116 (9)0.0239 (11)0.0025 (10)
C20.0193 (8)0.0252 (10)0.0187 (11)0.0034 (7)0.0042 (7)0.0030 (7)
C30.0215 (9)0.0206 (9)0.0263 (12)0.0066 (7)0.0017 (8)0.0031 (8)
C40.0341 (10)0.0129 (9)0.0291 (12)0.0003 (7)0.0054 (9)0.0018 (8)
C50.0334 (11)0.0165 (9)0.0273 (12)0.0086 (7)0.0029 (8)0.0030 (8)
C60.0214 (10)0.0325 (11)0.0441 (14)0.0059 (8)0.0066 (9)0.0025 (10)
O20.0300 (7)0.0179 (6)0.0300 (8)0.0067 (5)0.0164 (6)0.0047 (6)
O30.0199 (6)0.0170 (6)0.0260 (8)0.0009 (5)0.0016 (5)0.0034 (5)
O40.0196 (6)0.0183 (6)0.0299 (8)0.0052 (5)0.0034 (5)0.0035 (6)
Geometric parameters (Å, º) top
Sn1—O12.1343 (13)C2—H2B0.9900
Sn1—O1i2.1343 (13)C3—O31.428 (2)
Sn1—Cl12.3772 (4)C3—H3A0.9900
Sn1—Cl1i2.3772 (4)C3—H3B0.9900
Sn1—Cl2i2.3853 (5)C4—O31.421 (2)
Sn1—Cl22.3853 (5)C4—C51.499 (3)
O1—H10.82 (2)C4—H4A0.9900
O1—H20.77 (2)C4—H4B0.9900
C1—O21.433 (2)C5—O41.429 (2)
C1—H1A0.9800C5—H5A0.9900
C1—H1B0.9800C5—H5B0.9900
C1—H1C0.9800C6—O41.429 (2)
C2—O21.425 (2)C6—H6A0.9800
C2—C31.494 (2)C6—H6B0.9800
C2—H2A0.9900C6—H6C0.9800
O1—Sn1—O1i82.72 (8)H2A—C2—H2B108.4
O1—Sn1—Cl188.04 (4)O3—C3—C2108.66 (14)
O1i—Sn1—Cl186.57 (4)O3—C3—H3A110.0
O1—Sn1—Cl1i86.57 (4)C2—C3—H3A110.0
O1i—Sn1—Cl1i88.04 (4)O3—C3—H3B110.0
Cl1—Sn1—Cl1i172.81 (2)C2—C3—H3B110.0
O1—Sn1—Cl2i172.96 (4)H3A—C3—H3B108.3
O1i—Sn1—Cl2i90.32 (4)O3—C4—C5108.18 (15)
Cl1—Sn1—Cl2i92.608 (16)O3—C4—H4A110.1
Cl1i—Sn1—Cl2i92.169 (17)C5—C4—H4A110.1
O1—Sn1—Cl290.32 (4)O3—C4—H4B110.1
O1i—Sn1—Cl2172.96 (4)C5—C4—H4B110.1
Cl1—Sn1—Cl292.169 (16)H4A—C4—H4B108.4
Cl1i—Sn1—Cl292.608 (16)O4—C5—C4109.14 (14)
Cl2i—Sn1—Cl296.65 (2)O4—C5—H5A109.9
Sn1—O1—H1123.4 (16)C4—C5—H5A109.9
Sn1—O1—H2122.1 (16)O4—C5—H5B109.9
H1—O1—H2111 (2)C4—C5—H5B109.9
O2—C1—H1A109.5H5A—C5—H5B108.3
O2—C1—H1B109.5O4—C6—H6A109.5
H1A—C1—H1B109.5O4—C6—H6B109.5
O2—C1—H1C109.5H6A—C6—H6B109.5
H1A—C1—H1C109.5O4—C6—H6C109.5
H1B—C1—H1C109.5H6A—C6—H6C109.5
O2—C2—C3108.58 (15)H6B—C6—H6C109.5
O2—C2—H2A110.0C2—O2—C1111.81 (14)
C3—C2—H2A110.0C4—O3—C3112.30 (13)
O2—C2—H2B110.0C6—O4—C5111.33 (14)
C3—C2—H2B110.0
O2—C2—C3—O365.6 (2)C5—C4—O3—C3176.00 (15)
O3—C4—C5—O464.9 (2)C2—C3—O3—C4170.23 (16)
C3—C2—O2—C1172.98 (17)C4—C5—O4—C6175.75 (16)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2···O20.77 (2)1.88 (2)2.6503 (18)175 (2)
O1—H1···O40.82 (2)1.91 (2)2.7296 (18)175 (2)

Experimental details

Crystal data
Chemical formula[SnCl4(H2O)2]·2C6H14O3
Mr564.86
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)120
a, b, c (Å)8.4023 (2), 17.1528 (3), 15.9612 (4)
V3)2300.38 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.55 × 0.43 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.472, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
20197, 2643, 2292
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.04
No. of reflections2643
No. of parameters121
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.50

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Sn1—O12.1343 (13)Sn1—Cl22.3853 (5)
Sn1—Cl12.3772 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2···O20.77 (2)1.88 (2)2.6503 (18)175 (2)
O1—H1···O40.82 (2)1.91 (2)2.7296 (18)175 (2)
 

Acknowledgements

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAzadmehr, A., Amini, M. M., Tadjarodi, A., Taeb, A. & Ng, S. W. (2001). Main Group Met. Chem. 24, 459–460.  CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHough, E., Nicholson, D. G. & Vasudevan, A. K. (1986). J. Chem. Soc. Dalton Trans. pp. 2335–2337.  CSD CrossRef Web of Science Google Scholar
First citationHutton, R. E. & Oakes, V. (1976). Adv. Chem. Ser. 157, 123–136.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, G., Cassol, A. & Russo, U. (1984). Inorg. Chim. Acta, 82, 81–84.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds