organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2034-o2035

N-(4-Chloro-2-nitro­phen­yl)methane­sulfonamide

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, cCentre for High Energy Physics, University of the Punjab, Lahore 54590, Pakistan, and dDepartment of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: noshinakbar@yahoo.com

(Received 18 September 2008; accepted 25 September 2008; online 30 September 2008)

The title compound, C7H7ClN2O4S, is of inter­est as a precursor to biologically active substituted quinolines. Its structure resembles those of the previously reported N-phenyl­methane sulfonamide and its 4-nitro, 4-fluoro and 4-bromo derivatives, with slightly different geometric parameters. An intra­molecular N—H⋯O hydrogen bond gives rise to a six-membered ring. Inter­molecular C—H⋯O contacts stabilize the crystal packing.

Related literature

For related literature, see: Ahn et al. (1997[Ahn, K. H., Ham, C., Kim, S.-K. & Cho, C.-W. (1997). J. Org. Chem. 62, 7047-7048.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Ozbek et al. (2007[Ozbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); Siddiqui et al. (2007[Siddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255-259.]); Gennarti et al. (1994[Gennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067-2069.]); Gowda et al. (2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.],c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.]); Hanson et al. (1999[Hanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761-4763.]); Moree et al. (1991[Moree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409-411.]); Oppolzer et al. (1991[Oppolzer, W., Kingma, A. J. & Pillai, S.-K. (1991). Tetrahedron Lett. 32, 4893-4895.]); Rough et al. (1998[Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994-10995.]); Zia-ur-Rehman et al. (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1775.], 2006[Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2007[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215-o4216.], 2008[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2008). Eur. J. Med. Chem. In the press. doi: 10.1016/j.ejmech.2008.08.002.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7ClN2O4S

  • Mr = 250.67

  • Monoclinic, P 21 /n

  • a = 11.728 (3) Å

  • b = 4.9798 (13) Å

  • c = 17.988 (5) Å

  • β = 107.334 (8)°

  • V = 1002.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 296 (2) K

  • 0.22 × 0.14 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 10700 measured reflections

  • 2590 independent reflections

  • 1199 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.147

  • S = 0.97

  • 2556 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.80 (4) 2.03 (4) 2.631 (4) 131 (3)
C3—H3⋯O3i 0.93 2.59 3.417 (4) 148
C5—H5⋯O2ii 0.93 2.47 3.325 (5) 152
C6—H6⋯O2 0.93 2.27 2.951 (5) 130
C7—H8⋯O3iii 0.96 2.53 3.394 (5) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Sulfonamides are familiar for their enormous potential as biologically active molecules (Hanson et al., 1999; Moree et al., 1991; Rough et al., 1998). They are being used as anti-microbial (Ozbek et al., 2007), anti-convulsant (Siddiqui et al., 2007), and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions (Gennarti et al., 1994). Besides, these are known as compounds being used as agricultural agents and chiral auxiliaries (Ahn et al., 1997; Oppolzer et al., 1991). Among these, alkyl sulfonanilides are of special interest due to their stereochemistry with amide hydrogen on one side of the plane of benzene ring making it a good receptor site for biological reactions. In the present paper, the structure of N-(4-chloro-2-nitrophenyl)methanesulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006, 2007, 2008). In the molecule of (I) (Fig. 1), bond lengths and bond angles are almost similar to those in the related molecules (Gowda et al., 2007a,b,c) and are within normal ranges (Allen et al., 1987). Intramolecular interaction [N1—H1···O3] is observed in the title molecule giving rise to six-membered hydrogen bonded ring. Each molecule is centrosymmetrically linked to its adjacent one through intermolecular [N1—H1···O1] hydrogen bonds on one side, and via [C5—H5···O2] hydrogen bonds on the other side, giving rise to a zigzag chain along a axis. Each molecule of a chain is further linked to the member of adjacent chain via [C3—H3···O3] hydrogen bonds along c giving rise to a three dimensional network.

Related literature top

For related literature, see: Ahn et al. (1997); Allen et al. (1987); Ozbek et al. (2007); Siddiqui et al. (2007); Gennarti et al. (1994); Gowda et al. (2007a,b,c); Hanson et al. (1999); Moree et al. (1991); Oppolzer et al. (1991); Rough et al. (1998); Zia-ur-Rehman et al. (2005, 2006, 2007, 2008).

Experimental top

A mixture of 4-chloro-2-nitroaniline (3.452 g; 20.0 mmoles) and mesyl chloride (2.52 g; 22.0 mmoles) and toluene (25.0 ml) was heated to reflux for half an hour. Solvent was then distilled off under reduced pressure and the resultant solids were washed with cold methanol. Crystals suitable for analysis were obtained by slow evaporation of methanolic solution over a period of two days.

Refinement top

H atoms bound to C were placed in calculated positions (C—H distance = 0.95 Å) using a riding model. H atoms on N and O were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing showing hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
N-(4-Chloro-2-nitrophenyl)methanesulfonamide top
Crystal data top
C7H7ClN2O4SF(000) = 512
Mr = 250.67Dx = 1.660 Mg m3
Monoclinic, P21/nMelting point: 388 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.728 (3) ÅCell parameters from 1283 reflections
b = 4.9798 (13) Åθ = 2.4–20.9°
c = 17.988 (5) ŵ = 0.58 mm1
β = 107.334 (8)°T = 296 K
V = 1002.8 (5) Å3Needle, light yellow
Z = 40.22 × 0.14 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1199 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.081
Graphite monochromatorθmax = 28.7°, θmin = 1.9°
Detector resolution: 7.5 pixels mm-1h = 1515
ϕ and ω scansk = 66
10700 measured reflectionsl = 2324
2590 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0627P)2]
where P = (Fo2 + 2Fc2)/3
2556 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C7H7ClN2O4SV = 1002.8 (5) Å3
Mr = 250.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.728 (3) ŵ = 0.58 mm1
b = 4.9798 (13) ÅT = 296 K
c = 17.988 (5) Å0.22 × 0.14 × 0.07 mm
β = 107.334 (8)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1199 reflections with I > 2σ(I)
10700 measured reflectionsRint = 0.081
2590 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.25 e Å3
2556 reflectionsΔρmin = 0.39 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36565 (9)0.3010 (2)0.78879 (7)0.0757 (4)
S10.82089 (9)0.53780 (17)1.02558 (6)0.0499 (3)
O10.9148 (3)0.7102 (5)1.01960 (19)0.0756 (9)
O20.7141 (2)0.6562 (5)1.03188 (16)0.0647 (8)
O30.8855 (2)0.1004 (5)0.85222 (14)0.0554 (7)
O40.8088 (2)0.2740 (5)0.80406 (15)0.0613 (7)
H10.852 (3)0.324 (7)0.938 (2)0.047 (11)*
N10.7906 (3)0.3571 (6)0.94717 (19)0.0509 (8)
N20.8034 (3)0.0641 (6)0.83722 (16)0.0441 (7)
C10.6920 (3)0.1941 (6)0.91264 (19)0.0416 (8)
C20.6953 (3)0.0052 (6)0.85865 (19)0.0397 (8)
C30.5963 (3)0.1573 (7)0.8216 (2)0.0473 (9)
H30.60130.28840.78590.057*
C40.4913 (3)0.1147 (7)0.8376 (2)0.0507 (9)
C50.4847 (3)0.0733 (7)0.8916 (2)0.0559 (10)
H50.41360.09740.90370.067*
C60.5830 (4)0.2266 (7)0.9282 (2)0.0556 (10)
H60.57670.35540.96420.067*
C70.8741 (4)0.3148 (8)1.1025 (3)0.0756 (13)
H80.94130.21831.09590.113*
H90.81210.19031.10360.113*
H70.89840.41271.15070.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0495 (6)0.0871 (8)0.0875 (9)0.0078 (5)0.0156 (6)0.0033 (6)
S10.0594 (6)0.0414 (5)0.0527 (6)0.0081 (4)0.0224 (5)0.0082 (4)
O10.083 (2)0.0540 (15)0.100 (2)0.0184 (14)0.0431 (19)0.0276 (15)
O20.0700 (18)0.0622 (16)0.0661 (19)0.0267 (13)0.0267 (14)0.0096 (13)
O30.0468 (15)0.0678 (16)0.0571 (18)0.0027 (13)0.0238 (13)0.0109 (13)
O40.0608 (17)0.0650 (16)0.0627 (19)0.0092 (12)0.0255 (14)0.0258 (13)
N10.050 (2)0.0539 (18)0.058 (2)0.0022 (16)0.0296 (17)0.0131 (14)
N20.0457 (18)0.0526 (17)0.0364 (17)0.0107 (15)0.0157 (13)0.0016 (13)
C10.048 (2)0.0412 (18)0.040 (2)0.0068 (16)0.0205 (17)0.0032 (15)
C20.042 (2)0.0445 (18)0.0361 (19)0.0112 (15)0.0167 (16)0.0071 (14)
C30.050 (2)0.053 (2)0.040 (2)0.0066 (17)0.0149 (17)0.0007 (16)
C40.042 (2)0.058 (2)0.053 (2)0.0034 (17)0.0137 (18)0.0078 (18)
C50.044 (2)0.061 (2)0.071 (3)0.0128 (19)0.029 (2)0.006 (2)
C60.060 (3)0.053 (2)0.063 (3)0.0093 (19)0.032 (2)0.0051 (18)
C70.086 (3)0.075 (3)0.058 (3)0.021 (2)0.010 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C41.741 (4)C1—C61.397 (5)
S1—O21.419 (3)C2—C31.380 (5)
S1—O11.426 (3)C3—C41.363 (4)
S1—N11.621 (3)C3—H30.9300
S1—C71.739 (4)C4—C51.368 (5)
O3—N21.231 (3)C5—C61.375 (5)
O4—N21.215 (3)C5—H50.9300
N1—C11.397 (4)C6—H60.9300
N1—H10.80 (3)C7—H80.9600
N2—C21.461 (4)C7—H90.9600
C1—C21.397 (4)C7—H70.9600
O2—S1—O1118.43 (17)C4—C3—C2119.7 (3)
O2—S1—N1109.28 (17)C4—C3—H3120.1
O1—S1—N1104.05 (17)C2—C3—H3120.1
O2—S1—C7108.5 (2)C3—C4—C5120.2 (3)
O1—S1—C7110.0 (2)C3—C4—Cl1119.5 (3)
N1—S1—C7105.77 (19)C5—C4—Cl1120.3 (3)
C1—N1—S1130.3 (3)C4—C5—C6120.2 (3)
C1—N1—H1118 (3)C4—C5—H5119.9
S1—N1—H1108 (3)C6—C5—H5119.9
O4—N2—O3121.9 (3)C5—C6—C1121.8 (3)
O4—N2—C2118.6 (3)C5—C6—H6119.1
O3—N2—C2119.5 (3)C1—C6—H6119.1
C2—C1—C6116.0 (3)S1—C7—H8109.5
C2—C1—N1122.1 (3)S1—C7—H9109.5
C6—C1—N1121.9 (3)H8—C7—H9109.5
C3—C2—C1122.1 (3)S1—C7—H7109.5
C3—C2—N2115.7 (3)H8—C7—H7109.5
C1—C2—N2122.2 (3)H9—C7—H7109.5
O2—S1—N1—C137.6 (4)O4—N2—C2—C1163.9 (3)
O1—S1—N1—C1165.0 (3)O3—N2—C2—C117.0 (4)
C7—S1—N1—C179.0 (4)C1—C2—C3—C40.1 (5)
S1—N1—C1—C2161.2 (3)N2—C2—C3—C4179.5 (3)
S1—N1—C1—C621.0 (5)C2—C3—C4—C51.7 (5)
C6—C1—C2—C31.3 (5)C2—C3—C4—Cl1178.3 (3)
N1—C1—C2—C3176.7 (3)C3—C4—C5—C62.2 (6)
C6—C1—C2—N2179.3 (3)Cl1—C4—C5—C6177.8 (3)
N1—C1—C2—N22.7 (5)C4—C5—C6—C11.0 (6)
O4—N2—C2—C316.6 (4)C2—C1—C6—C50.7 (5)
O3—N2—C2—C3162.5 (3)N1—C1—C6—C5177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.80 (4)2.03 (4)2.631 (4)131 (3)
C3—H3···O3i0.932.593.417 (4)148
C5—H5···O2ii0.932.473.325 (5)152
C6—H6···O20.932.272.951 (5)130
C7—H8···O3iii0.962.533.394 (5)150
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC7H7ClN2O4S
Mr250.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.728 (3), 4.9798 (13), 17.988 (5)
β (°) 107.334 (8)
V3)1002.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.22 × 0.14 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10700, 2590, 1199
Rint0.081
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 0.97
No. of reflections2556
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.80 (4)2.03 (4)2.631 (4)131 (3)
C3—H3···O3i0.932.593.417 (4)148
C5—H5···O2ii0.932.473.325 (5)152
C6—H6···O20.932.272.951 (5)130
C7—H8···O3iii0.962.533.394 (5)150
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+2, y, z+2.
 

Acknowledgements

The authors are grateful to the PCSIR Laboratories Complex, Lahore, Pakistan, for provision of the necessary chemicals, and to the Higher Education Commission of Pakistan for the grant to purchase the diffractometer.

References

First citationAhn, K. H., Ham, C., Kim, S.-K. & Cho, C.-W. (1997). J. Org. Chem. 62, 7047–7048.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl. 33, 2067–2069.  Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett. 40, 4761–4763.  Web of Science CrossRef CAS Google Scholar
First citationMoree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett. 32, 409–411.  CrossRef CAS Web of Science Google Scholar
First citationOppolzer, W., Kingma, A. J. & Pillai, S.-K. (1991). Tetrahedron Lett. 32, 4893–4895.  CrossRef CAS Web of Science Google Scholar
First citationOzbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  Web of Science CrossRef PubMed Google Scholar
First citationRough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc. 120, 10994–10995.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, N., Pandeya, S. N., Khan, S. A., Stables, J., Rana, A., Alam, M., Arshad, M. F. & Bhat, M. A. (2007). Bioorg. Med. Chem. Lett. 17, 255–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1775.  CAS Google Scholar
First citationZia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2008). Eur. J. Med. Chem. In the press. doi: 10.1016/j.ejmech.2008.08.002.  Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Weaver, G. W. (2007). Acta Cryst. E63, o4215–o4216.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2034-o2035
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds