metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-(4-Acetyl­naphth­yl)chlorido­bis­(tri­phenyl­phosphine-κP)nickel(II) di­chloro­methane solvate

aBeijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Graduate School of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China, and bBeijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
*Correspondence e-mail: yanglm@iccas.ac.cn

(Received 9 July 2008; accepted 28 August 2008; online 6 September 2008)

The title compound, [Ni(C12H9O)Cl(C18H15P)2]·CH2Cl2, was synthesized from the reaction between 1-acetyl-4-chloro­naphthalene, NiCl2·6H2O and triphenyl­phosphine (PPh3) in ethanol. The compound contains one crystallographically unique nickel ion in a pseudo-square-planar geometry.

Related literature

For related literature, see: Brandsma et al. (1998[Brandsma, L., Vasilevsky, S. F. & Verkruijsse, H. D. (1998). Application of Transition Metal Catalysts in Organic Synthesis, pp 3-4. New York: Springer.]); Semmelhack et al. (1971[Semmelhack, M. F., Helquist, P. M. & Jones, L. D. (1971). J. Am. Chem. Soc. 93, 5908-5910.]); Soolinger et al. (1990[Soolinger, J. V., Verkruijsse, H. D., Keegstra, M. A. & Brandsma, L. (1990). Synth. Commun. 20, 3153-3156.]); Chen & Yang (2007[Chen, C. & Yang, L. M. (2007). Tetrahedron Lett. 48, 2427-2430.]); Cramer & Coulson (1975[Cramer, R. & Coulson, D. R. (1975). J. Org. Chem. 40, 2267-2273.]); Morrell & Kochi (1975[Morrell, D. G. & Kochi, J. K. (1975). J. Am. Chem. Soc. 97, 7262-7270.]); Parshall (1974[Parshall, G. W. (1974). J. Am. Chem. Soc. 96, 2360-2366.]); Semmelhack & Ryono (1975[Semmelhack, M. F. & Ryono, L. S. (1975). J. Am. Chem. Soc. 97, 3873-3875.]); Tsou & Kochi (1979a[Tsou, T. T. & Kochi, J. K. (1979a). J. Am. Chem. Soc. 101, 7547-7560.],b[Tsou, T. T. & Kochi, J. K. (1979b). J. Am. Chem. Soc. 101, 6319-6332.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H9O)Cl(C18H15P)2]·CH2Cl2

  • Mr = 872.82

  • Monoclinic, P 21 /c

  • a = 21.203 (4) Å

  • b = 10.957 (2) Å

  • c = 21.048 (4) Å

  • β = 117.95 (3)°

  • V = 4319.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 296 (2) K

  • 0.22 × 0.17 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.] Tmin = 0.853, Tmax = 0.903

  • 14070 measured reflections

  • 7579 independent reflections

  • 4611 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.182

  • S = 1.05

  • 7579 reflections

  • 505 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELX97.

Supporting information


Comment top

Research in the field of organonickel catalysts has developed significantly in recent years. Semmelhack et al. (1971) have demonstrated that the Ni(II)–(σ–aryl) complex may act as an intermediate (oxidative adduct) in the catalytic cycle of Ni-catalyzed cross-couplings. Cramer & Coulson (1975), Morrell & Kochi (1975), Parshall (1974), Tsou & Kochi (1979a) and Tsou & Kochi (1979b) have also conducted an intensive investigation of Ni(II)–(σ–aryl) complexes, focusing mainly on insight into the nature and mechanism of nickel-catalyzed processes. In addition, Soolinger et al. (1990) have shown that it is possible to use such complexes as catalyst in cross-coupling reactions. Consequently, we were interested in the synthesis and direct application of Ni(II)–(σ–aryl) complex catalysts for carbon-heteroatom coupling. In particular, we are investigating a type of isolatable trans-haloarylbis(triphenylphosphine)nickel(II) that is readily available and air- and thermally stable (Chen & Yang, 2007). For this purpose, we have synthesized the title compound in an analogous fashion to a previous literature precedent (Brandsma et al. 1998).

The reaction between NiCl2.6H2O, PPh3 and 1-acetyl-4-chloronaphthalene in ethanol leads to the formation the title compound (I) in high yield. The Ni2+ metal centre of the complex displays a pseudo-square-planar geometry (Figure I).

Related literature top

For related literature, see: Brandsma et al. (1998); Semmelhack et al. (1971); Soolinger et al. (1990); Chen & Yang (2007); Cramer & Coulson (1975); Morrell & Kochi (1975); Parshall (1974); Semmelhack & Ryono (1975); Tsou & Kochi (1979a,b).

Experimental top

A stirred mixture of 48.0 g (0.20 mol) of NiCl2.6H2O, 115.3 g (0.44 mol) of triphenylphosphine and 900 ml of 96% ethanol was heated until a gentle reflux started. 1-Acetyl-4-chloronaphthalene (0.4 mol, 82 g, excesss) was then added, followed by zinc dust (13 g, 0.2 mol, Merck, analytical grade) over 5 min. The mixture very soon turned yellow. After stirring and heating under reflux for 1.5 h (under nitrogen), the mixture was cooled to 293 K. Four 20-ml portions of 30% aqueous hydrochloric acid were added over 15 min. After stirring for 1.5 h, the solid was filtered off on a sintered-glass funnel and successively washed with 200 ml of ethanol, twice with 200 ml of 1M aqueous hydrochloric acid, twice with 200 ml of 96% ethanol and once with 200 ml of pentane. The yellowish solid was dried in vacuo. The yield was at least 80%. Single crystals suitable for X-ray measurements were grown by slow evaporation of a CH2Cl2 solution and the crystals contain one molecule of CH2Cl2. 1HNMR (CDCl3, 300 MHz): 2.40 (s, 3 H), 5.29 (s, 2 H), 7.11–7.15 (m, 15 H), 7.22–7.25 (m, 8 H), 7.47–7.49 (m, 13 H). Anal. Calcd for C48H39ClNiOP2?CH2Cl2: C, 67.43; H, 4.73. Found: C, 67.76; H, 4.71.

Refinement top

All nine restraints were used to make the refinement of the slightly disordered solvent, dichloromethane, more stable. Six of the restraints were used to make the anisotropic displacement parameters of C49 in dichloromethane approximately isotropic. The other three restraints were used to make the components of the anisotropic displacement parameters in the direction of the C-Cl bond in dichloromethane approximately equal. H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, and with Uiso=1.2–1.5Ueq of the parent atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the complex, Ellipsoids are drawn at the 30% probability level.
trans-(4-Acetylnaphthyl)chloridobis(triphenylphosphine-κP)nickel(II) dichloromethane solvate top
Crystal data top
[Ni(C12H9O)Cl(C18H15P)2]·CH2Cl2F(000) = 1808
Mr = 872.82Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 21.203 (4) ÅCell parameters from 14070 reflections
b = 10.957 (2) Åθ = 2.2–25.0°
c = 21.048 (4) ŵ = 0.75 mm1
β = 117.95 (3)°T = 296 K
V = 4319.5 (15) Å3Block, yellow
Z = 40.22 × 0.17 × 0.14 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
7579 independent reflections
Radiation source: rotating anode4611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995
h = 2525
Tmin = 0.853, Tmax = 0.903k = 1313
14070 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.074P)2 + 3.5819P]
where P = (Fo2 + 2Fc2)/3
7579 reflections(Δ/σ)max < 0.001
505 parametersΔρmax = 0.39 e Å3
9 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ni(C12H9O)Cl(C18H15P)2]·CH2Cl2V = 4319.5 (15) Å3
Mr = 872.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.203 (4) ŵ = 0.75 mm1
b = 10.957 (2) ÅT = 296 K
c = 21.048 (4) Å0.22 × 0.17 × 0.14 mm
β = 117.95 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
7579 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995
4611 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.903Rint = 0.063
14070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0809 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
7579 reflectionsΔρmin = 0.53 e Å3
505 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.30210 (4)0.08593 (7)0.15828 (4)0.0395 (2)
P10.32506 (8)0.00633 (14)0.26432 (7)0.0388 (4)
P20.27230 (8)0.16467 (14)0.05070 (8)0.0425 (4)
Cl10.40230 (8)0.00498 (17)0.16800 (9)0.0618 (5)
C10.2331 (3)0.1868 (6)0.1637 (3)0.0488 (15)
C20.2542 (3)0.3039 (6)0.1945 (3)0.0487 (15)
H2A0.30050.32990.20830.058*
C30.2087 (4)0.3806 (6)0.2049 (3)0.0614 (18)
H3A0.22530.45600.22650.074*
C40.1373 (3)0.3475 (7)0.1834 (4)0.0587 (18)
C50.0452 (4)0.1886 (7)0.1291 (4)0.073 (2)
H5A0.01310.23770.13580.088*
C60.0226 (4)0.0753 (9)0.0977 (5)0.096 (3)
H6A0.02400.04980.08300.115*
C70.0703 (4)0.0002 (8)0.0885 (5)0.087 (3)
H7A0.05590.07680.06810.104*
C80.1382 (3)0.0388 (6)0.1093 (3)0.0507 (16)
H8A0.16910.01210.10170.061*
C90.1628 (3)0.1510 (6)0.1413 (3)0.0490 (15)
C100.1131 (3)0.2317 (6)0.1507 (3)0.0554 (17)
C110.0928 (5)0.4364 (8)0.1947 (5)0.085 (2)
C120.1249 (5)0.5371 (9)0.2479 (5)0.112 (3)
H12A0.08760.58690.24780.169*
H12B0.15480.58610.23520.169*
H12C0.15290.50320.29500.169*
C130.3593 (3)0.1497 (5)0.2738 (3)0.0409 (13)
C140.3231 (4)0.2292 (6)0.2175 (3)0.0612 (18)
H14A0.28210.20350.17710.073*
C150.3475 (4)0.3463 (7)0.2209 (4)0.077 (2)
H15A0.32230.39970.18300.092*
C160.4082 (4)0.3856 (7)0.2789 (5)0.073 (2)
H16A0.42440.46500.28070.088*
C170.4447 (4)0.3064 (7)0.3344 (4)0.070 (2)
H17A0.48640.33200.37400.084*
C180.4201 (3)0.1883 (6)0.3324 (3)0.0511 (15)
H18A0.44500.13560.37070.061*
C190.2542 (3)0.0083 (5)0.2901 (3)0.0410 (14)
C200.2276 (3)0.0955 (6)0.3072 (3)0.0534 (16)
H20A0.24950.17030.31000.064*
C210.1692 (4)0.0906 (8)0.3204 (3)0.065 (2)
H21A0.15140.16160.33030.078*
C220.1384 (4)0.0189 (9)0.3187 (4)0.078 (2)
H22A0.09940.02310.32750.094*
C230.1648 (4)0.1226 (8)0.3042 (5)0.087 (3)
H23A0.14440.19760.30450.104*
C240.2212 (4)0.1174 (6)0.2891 (4)0.0649 (19)
H24A0.23750.18890.27800.078*
C250.3928 (3)0.0981 (5)0.3373 (3)0.0432 (14)
C260.4041 (3)0.0847 (7)0.4081 (3)0.0594 (17)
H26A0.37870.02600.41860.071*
C270.4523 (4)0.1571 (8)0.4619 (4)0.074 (2)
H27A0.45990.14690.50890.089*
C280.4892 (4)0.2442 (8)0.4466 (4)0.079 (3)
H28A0.52120.29430.48320.094*
C290.4795 (3)0.2588 (6)0.3778 (4)0.069 (2)
H29A0.50500.31820.36800.083*
C300.4314 (3)0.1846 (6)0.3229 (4)0.0549 (17)
H30A0.42530.19350.27640.066*
C310.1786 (3)0.1968 (6)0.0129 (3)0.0531 (16)
C320.1423 (4)0.2884 (7)0.0015 (4)0.0653 (19)
H32A0.16550.33210.04420.078*
C330.0719 (4)0.3167 (9)0.0466 (5)0.088 (3)
H33A0.04810.37940.03690.105*
C340.0382 (4)0.2491 (10)0.1094 (5)0.095 (3)
H34A0.00900.26670.14210.114*
C350.0724 (5)0.1580 (9)0.1239 (5)0.094 (3)
H35A0.04900.11350.16630.113*
C360.1427 (4)0.1311 (7)0.0751 (4)0.066 (2)
H36A0.16580.06740.08490.080*
C370.2992 (3)0.0733 (6)0.0052 (3)0.0484 (15)
C380.2945 (4)0.0516 (6)0.0044 (4)0.072 (2)
H38A0.28190.08850.02790.086*
C390.3079 (5)0.1232 (7)0.0505 (4)0.084 (2)
H39A0.30380.20760.04970.101*
C400.3272 (4)0.0701 (9)0.0972 (4)0.085 (2)
H40A0.33550.11800.12900.102*
C410.3345 (4)0.0533 (8)0.0972 (4)0.081 (2)
H41A0.34930.08930.12800.097*
C420.3200 (4)0.1257 (6)0.0517 (4)0.0623 (19)
H42A0.32430.21010.05260.075*
C430.3157 (3)0.3125 (5)0.0609 (3)0.0474 (15)
C440.2852 (4)0.4064 (6)0.0119 (4)0.0594 (17)
H44A0.24150.39390.02870.071*
C450.3187 (5)0.5187 (7)0.0223 (5)0.081 (2)
H45A0.29700.58090.01100.097*
C460.3827 (5)0.5386 (8)0.0806 (5)0.083 (2)
H46A0.40480.61440.08750.100*
C470.4149 (4)0.4462 (8)0.1293 (4)0.072 (2)
H47A0.45930.45900.16890.087*
C480.3810 (3)0.3325 (6)0.1198 (3)0.0553 (17)
H48A0.40280.27060.15330.066*
O10.0262 (4)0.4345 (7)0.1605 (5)0.145 (3)
C490.1173 (9)0.8578 (12)0.4912 (7)0.222 (8)
H49A0.06640.85290.45920.266*
H49B0.13470.93130.47890.266*
Cl20.1563 (2)0.7385 (4)0.4758 (3)0.1911 (17)
Cl30.1305 (3)0.8714 (6)0.5768 (3)0.247 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0434 (4)0.0430 (4)0.0364 (4)0.0042 (3)0.0222 (3)0.0058 (3)
P10.0431 (8)0.0412 (9)0.0335 (8)0.0034 (7)0.0192 (6)0.0030 (7)
P20.0488 (9)0.0426 (9)0.0389 (8)0.0022 (7)0.0228 (7)0.0058 (7)
Cl10.0528 (9)0.0820 (13)0.0607 (10)0.0167 (9)0.0350 (8)0.0139 (9)
C10.047 (3)0.050 (4)0.044 (3)0.003 (3)0.018 (3)0.014 (3)
C20.044 (3)0.050 (4)0.052 (4)0.008 (3)0.022 (3)0.001 (3)
C30.065 (4)0.057 (5)0.055 (4)0.014 (3)0.022 (3)0.002 (3)
C40.048 (4)0.065 (5)0.063 (4)0.014 (3)0.026 (3)0.016 (4)
C50.056 (4)0.065 (5)0.087 (6)0.000 (4)0.025 (4)0.008 (4)
C60.053 (5)0.098 (7)0.126 (8)0.005 (5)0.033 (5)0.011 (6)
C70.062 (5)0.081 (6)0.101 (6)0.006 (5)0.023 (4)0.010 (5)
C80.045 (3)0.048 (4)0.054 (4)0.002 (3)0.019 (3)0.002 (3)
C90.054 (4)0.047 (4)0.046 (3)0.001 (3)0.023 (3)0.009 (3)
C100.055 (4)0.054 (4)0.060 (4)0.014 (3)0.029 (3)0.017 (3)
C110.076 (6)0.080 (6)0.098 (6)0.010 (5)0.041 (5)0.001 (5)
C120.127 (8)0.099 (7)0.110 (7)0.037 (6)0.054 (6)0.019 (6)
C130.048 (3)0.037 (3)0.043 (3)0.007 (3)0.026 (3)0.003 (3)
C140.065 (4)0.060 (5)0.053 (4)0.011 (4)0.023 (3)0.001 (3)
C150.100 (6)0.065 (5)0.072 (5)0.011 (5)0.046 (5)0.012 (4)
C160.091 (6)0.049 (5)0.097 (6)0.020 (4)0.058 (5)0.005 (4)
C170.064 (4)0.064 (5)0.081 (5)0.018 (4)0.034 (4)0.020 (4)
C180.052 (4)0.048 (4)0.055 (4)0.007 (3)0.027 (3)0.007 (3)
C190.046 (3)0.048 (4)0.033 (3)0.011 (3)0.022 (3)0.002 (3)
C200.064 (4)0.058 (4)0.041 (3)0.010 (3)0.026 (3)0.005 (3)
C210.072 (4)0.086 (6)0.048 (4)0.023 (4)0.038 (3)0.003 (4)
C220.072 (5)0.101 (7)0.085 (6)0.005 (5)0.055 (5)0.002 (5)
C230.100 (6)0.072 (6)0.121 (7)0.030 (5)0.079 (6)0.012 (5)
C240.081 (5)0.055 (5)0.081 (5)0.010 (4)0.056 (4)0.006 (4)
C250.043 (3)0.041 (3)0.038 (3)0.011 (3)0.014 (3)0.002 (3)
C260.060 (4)0.070 (5)0.045 (4)0.009 (4)0.022 (3)0.003 (4)
C270.067 (5)0.095 (6)0.043 (4)0.006 (5)0.012 (4)0.020 (4)
C280.051 (4)0.080 (6)0.074 (6)0.012 (4)0.003 (4)0.037 (5)
C290.051 (4)0.052 (4)0.089 (6)0.000 (3)0.020 (4)0.012 (4)
C300.050 (4)0.051 (4)0.058 (4)0.005 (3)0.021 (3)0.002 (3)
C310.057 (4)0.054 (4)0.050 (4)0.009 (3)0.026 (3)0.014 (3)
C320.058 (4)0.071 (5)0.061 (4)0.009 (4)0.023 (4)0.017 (4)
C330.065 (5)0.096 (7)0.098 (7)0.016 (5)0.035 (5)0.032 (6)
C340.059 (5)0.104 (8)0.087 (7)0.009 (5)0.006 (5)0.036 (6)
C350.071 (6)0.100 (7)0.079 (6)0.025 (5)0.008 (5)0.001 (5)
C360.061 (4)0.062 (5)0.061 (5)0.014 (4)0.016 (4)0.005 (4)
C370.059 (4)0.047 (4)0.040 (3)0.007 (3)0.024 (3)0.001 (3)
C380.113 (6)0.055 (5)0.066 (5)0.010 (4)0.059 (5)0.002 (4)
C390.131 (7)0.048 (5)0.080 (6)0.003 (5)0.055 (5)0.001 (4)
C400.094 (6)0.089 (7)0.083 (6)0.004 (5)0.051 (5)0.022 (5)
C410.095 (6)0.092 (7)0.078 (5)0.023 (5)0.058 (5)0.015 (5)
C420.078 (5)0.060 (5)0.065 (4)0.012 (4)0.047 (4)0.009 (3)
C430.059 (4)0.043 (4)0.049 (4)0.010 (3)0.032 (3)0.005 (3)
C440.077 (4)0.045 (4)0.061 (4)0.002 (4)0.037 (4)0.010 (3)
C450.099 (6)0.055 (5)0.106 (7)0.009 (4)0.062 (6)0.014 (4)
C460.097 (7)0.058 (5)0.121 (8)0.017 (5)0.072 (6)0.010 (5)
C470.059 (4)0.088 (6)0.083 (5)0.029 (4)0.045 (4)0.041 (5)
C480.053 (4)0.065 (5)0.061 (4)0.009 (3)0.038 (3)0.004 (3)
O10.083 (5)0.133 (6)0.204 (8)0.034 (4)0.054 (5)0.043 (6)
C490.32 (2)0.117 (10)0.143 (9)0.080 (11)0.034 (12)0.023 (9)
Cl20.154 (3)0.179 (4)0.273 (5)0.019 (3)0.128 (3)0.007 (3)
Cl30.246 (5)0.310 (7)0.184 (4)0.016 (5)0.100 (4)0.079 (4)
Geometric parameters (Å, º) top
Ni1—C11.880 (6)C23—C241.375 (10)
Ni1—P22.2204 (17)C23—H23A0.9300
Ni1—Cl12.2215 (17)C24—H24A0.9300
Ni1—P12.2273 (17)C25—C301.375 (8)
P1—C191.829 (6)C25—C261.402 (8)
P1—C131.831 (6)C26—C271.367 (9)
P1—C251.834 (6)C26—H26A0.9300
P2—C431.825 (6)C27—C281.366 (11)
P2—C371.828 (6)C27—H27A0.9300
P2—C311.836 (6)C28—C291.374 (10)
C1—C91.392 (8)C28—H28A0.9300
C1—C21.412 (8)C29—C301.390 (9)
C2—C31.371 (8)C29—H29A0.9300
C2—H2A0.9300C30—H30A0.9300
C3—C41.409 (9)C31—C361.370 (9)
C3—H3A0.9300C31—C321.382 (9)
C4—C101.420 (9)C32—C331.389 (9)
C4—C111.452 (10)C32—H32A0.9300
C5—C101.374 (9)C33—C341.386 (12)
C5—C61.381 (11)C33—H33A0.9300
C5—H5A0.9300C34—C351.350 (12)
C6—C71.386 (12)C34—H34A0.9300
C6—H6A0.9300C35—C361.389 (10)
C7—C81.362 (9)C35—H35A0.9300
C7—H7A0.9300C36—H36A0.9300
C8—C91.381 (8)C37—C381.373 (9)
C8—H8A0.9300C37—C421.373 (8)
C9—C101.459 (8)C38—C391.378 (10)
C11—O11.248 (9)C38—H38A0.9300
C11—C121.490 (11)C39—C401.360 (11)
C12—H12A0.9600C39—H39A0.9300
C12—H12B0.9600C40—C411.361 (11)
C12—H12C0.9600C40—H40A0.9300
C13—C181.368 (8)C41—C421.385 (10)
C13—C141.378 (8)C41—H41A0.9300
C14—C151.373 (9)C42—H42A0.9300
C14—H14A0.9300C43—C481.376 (8)
C15—C161.363 (10)C43—C441.384 (8)
C15—H15A0.9300C44—C451.385 (9)
C16—C171.367 (10)C44—H44A0.9300
C16—H16A0.9300C45—C461.355 (11)
C17—C181.388 (9)C45—H45A0.9300
C17—H17A0.9300C46—C471.374 (11)
C18—H18A0.9300C46—H46A0.9300
C19—C241.380 (8)C47—C481.404 (9)
C19—C201.390 (8)C47—H47A0.9300
C20—C211.391 (9)C48—H48A0.9300
C20—H20A0.9300C49—Cl21.658 (13)
C21—C221.359 (10)C49—Cl31.696 (15)
C21—H21A0.9300C49—H49A0.9700
C22—C231.362 (11)C49—H49B0.9700
C22—H22A0.9300
C1—Ni1—P288.62 (18)C23—C22—H22A120.0
C1—Ni1—Cl1165.33 (19)C22—C23—C24120.7 (7)
P2—Ni1—Cl192.97 (7)C22—C23—H23A119.7
C1—Ni1—P188.87 (18)C24—C23—H23A119.7
P2—Ni1—P1176.57 (7)C23—C24—C19121.5 (7)
Cl1—Ni1—P190.05 (7)C23—C24—H24A119.3
C19—P1—C13103.0 (3)C19—C24—H24A119.3
C19—P1—C25103.2 (3)C30—C25—C26118.9 (6)
C13—P1—C25107.8 (3)C30—C25—P1120.4 (5)
C19—P1—Ni1120.53 (18)C26—C25—P1120.6 (5)
C13—P1—Ni1111.32 (19)C27—C26—C25120.6 (7)
C25—P1—Ni1110.0 (2)C27—C26—H26A119.7
C43—P2—C37105.7 (3)C25—C26—H26A119.7
C43—P2—C31103.2 (3)C28—C27—C26119.8 (7)
C37—P2—C31101.2 (3)C28—C27—H27A120.1
C43—P2—Ni1109.7 (2)C26—C27—H27A120.1
C37—P2—Ni1114.7 (2)C27—C28—C29120.8 (7)
C31—P2—Ni1120.8 (2)C27—C28—H28A119.6
C9—C1—C2118.0 (6)C29—C28—H28A119.6
C9—C1—Ni1123.6 (5)C28—C29—C30119.8 (8)
C2—C1—Ni1118.3 (4)C28—C29—H29A120.1
C3—C2—C1122.3 (6)C30—C29—H29A120.1
C3—C2—H2A118.8C25—C30—C29120.0 (7)
C1—C2—H2A118.8C25—C30—H30A120.0
C2—C3—C4121.4 (6)C29—C30—H30A120.0
C2—C3—H3A119.3C36—C31—C32118.3 (6)
C4—C3—H3A119.3C36—C31—P2121.5 (6)
C3—C4—C10118.4 (6)C32—C31—P2120.2 (5)
C3—C4—C11117.3 (7)C31—C32—C33121.4 (8)
C10—C4—C11124.3 (6)C31—C32—H32A119.3
C10—C5—C6122.8 (8)C33—C32—H32A119.3
C10—C5—H5A118.6C34—C33—C32118.3 (9)
C6—C5—H5A118.6C34—C33—H33A120.9
C5—C6—C7119.3 (8)C32—C33—H33A120.9
C5—C6—H6A120.4C35—C34—C33121.2 (8)
C7—C6—H6A120.4C35—C34—H34A119.4
C8—C7—C6120.1 (8)C33—C34—H34A119.4
C8—C7—H7A120.0C34—C35—C36119.6 (8)
C6—C7—H7A120.0C34—C35—H35A120.2
C7—C8—C9122.3 (7)C36—C35—H35A120.2
C7—C8—H8A118.9C31—C36—C35121.2 (8)
C9—C8—H8A118.9C31—C36—H36A119.4
C8—C9—C1121.0 (6)C35—C36—H36A119.4
C8—C9—C10118.3 (6)C38—C37—C42118.4 (6)
C1—C9—C10120.7 (6)C38—C37—P2119.4 (5)
C5—C10—C4123.5 (7)C42—C37—P2122.1 (5)
C5—C10—C9117.3 (7)C37—C38—C39121.2 (7)
C4—C10—C9119.1 (6)C37—C38—H38A119.4
O1—C11—C4122.7 (8)C39—C38—H38A119.4
O1—C11—C12116.2 (8)C40—C39—C38119.8 (7)
C4—C11—C12121.1 (8)C40—C39—H39A120.1
C11—C12—H12A109.5C38—C39—H39A120.1
C11—C12—H12B109.5C39—C40—C41119.8 (8)
H12A—C12—H12B109.5C39—C40—H40A120.1
C11—C12—H12C109.5C41—C40—H40A120.1
H12A—C12—H12C109.5C40—C41—C42120.4 (8)
H12B—C12—H12C109.5C40—C41—H41A119.8
C18—C13—C14119.3 (6)C42—C41—H41A119.8
C18—C13—P1123.0 (5)C37—C42—C41120.2 (7)
C14—C13—P1117.6 (4)C37—C42—H42A119.9
C15—C14—C13120.1 (6)C41—C42—H42A119.9
C15—C14—H14A120.0C48—C43—C44118.3 (6)
C13—C14—H14A120.0C48—C43—P2119.1 (5)
C16—C15—C14121.1 (7)C44—C43—P2122.6 (5)
C16—C15—H15A119.4C43—C44—C45121.1 (7)
C14—C15—H15A119.4C43—C44—H44A119.5
C15—C16—C17118.9 (7)C45—C44—H44A119.5
C15—C16—H16A120.6C46—C45—C44120.6 (8)
C17—C16—H16A120.6C46—C45—H45A119.7
C16—C17—C18120.8 (7)C44—C45—H45A119.7
C16—C17—H17A119.6C45—C46—C47119.5 (8)
C18—C17—H17A119.6C45—C46—H46A120.2
C13—C18—C17119.8 (6)C47—C46—H46A120.2
C13—C18—H18A120.1C46—C47—C48120.4 (7)
C17—C18—H18A120.1C46—C47—H47A119.8
C24—C19—C20116.6 (6)C48—C47—H47A119.8
C24—C19—P1123.5 (5)C43—C48—C47120.1 (7)
C20—C19—P1119.7 (5)C43—C48—H48A120.0
C19—C20—C21121.8 (7)C47—C48—H48A120.0
C19—C20—H20A119.1Cl2—C49—Cl3115.4 (8)
C21—C20—H20A119.1Cl2—C49—H49A108.4
C22—C21—C20119.4 (7)Cl3—C49—H49A108.4
C22—C21—H21A120.3Cl2—C49—H49B108.4
C20—C21—H21A120.3Cl3—C49—H49B108.4
C21—C22—C23120.0 (7)H49A—C49—H49B107.5
C21—C22—H22A120.0
C1—Ni1—P1—C1932.3 (3)Ni1—P1—C19—C24103.8 (5)
P2—Ni1—P1—C1910.5 (13)C13—P1—C19—C20163.7 (4)
Cl1—Ni1—P1—C19162.3 (2)C25—P1—C19—C2051.6 (5)
C1—Ni1—P1—C13153.0 (3)Ni1—P1—C19—C2071.5 (5)
P2—Ni1—P1—C13110.2 (12)C24—C19—C20—C212.0 (9)
Cl1—Ni1—P1—C1341.6 (2)P1—C19—C20—C21173.7 (4)
C1—Ni1—P1—C2587.5 (3)C19—C20—C21—C222.0 (9)
P2—Ni1—P1—C25130.4 (12)C20—C21—C22—C230.1 (11)
Cl1—Ni1—P1—C2577.8 (2)C21—C22—C23—C241.9 (13)
C1—Ni1—P2—C4380.4 (3)C22—C23—C24—C191.9 (13)
Cl1—Ni1—P2—C4385.1 (2)C20—C19—C24—C230.1 (10)
P1—Ni1—P2—C43123.2 (12)P1—C19—C24—C23175.4 (6)
C1—Ni1—P2—C37160.9 (3)C19—P1—C25—C30142.6 (5)
Cl1—Ni1—P2—C3733.7 (2)C13—P1—C25—C30108.9 (5)
P1—Ni1—P2—C37118.1 (12)Ni1—P1—C25—C3012.7 (5)
C1—Ni1—P2—C3139.4 (3)C19—P1—C25—C2635.0 (5)
Cl1—Ni1—P2—C31155.2 (3)C13—P1—C25—C2673.6 (5)
P1—Ni1—P2—C313.4 (13)Ni1—P1—C25—C26164.8 (4)
P2—Ni1—C1—C992.1 (5)C30—C25—C26—C270.6 (9)
Cl1—Ni1—C1—C9171.5 (4)P1—C25—C26—C27177.0 (5)
P1—Ni1—C1—C985.6 (5)C25—C26—C27—C280.7 (11)
P2—Ni1—C1—C290.3 (4)C26—C27—C28—C291.2 (11)
Cl1—Ni1—C1—C26.2 (11)C27—C28—C29—C300.3 (11)
P1—Ni1—C1—C292.0 (4)C26—C25—C30—C291.5 (9)
C9—C1—C2—C32.0 (9)P1—C25—C30—C29176.1 (5)
Ni1—C1—C2—C3175.7 (5)C28—C29—C30—C251.0 (10)
C1—C2—C3—C41.7 (10)C43—P2—C31—C36125.6 (5)
C2—C3—C4—C100.2 (10)C37—P2—C31—C3616.4 (6)
C2—C3—C4—C11178.2 (7)Ni1—P2—C31—C36111.4 (5)
C10—C5—C6—C71.2 (13)C43—P2—C31—C3254.9 (6)
C5—C6—C7—C80.9 (13)C37—P2—C31—C32164.1 (5)
C6—C7—C8—C91.5 (12)Ni1—P2—C31—C3268.1 (6)
C7—C8—C9—C1178.3 (6)C36—C31—C32—C332.1 (10)
C7—C8—C9—C102.1 (9)P2—C31—C32—C33178.4 (6)
C2—C1—C9—C8178.6 (6)C31—C32—C33—C341.1 (11)
Ni1—C1—C9—C83.8 (8)C32—C33—C34—C350.1 (13)
C2—C1—C9—C101.0 (8)C33—C34—C35—C360.1 (14)
Ni1—C1—C9—C10176.7 (4)C32—C31—C36—C352.1 (10)
C6—C5—C10—C4179.6 (7)P2—C31—C36—C35178.3 (6)
C6—C5—C10—C91.8 (11)C34—C35—C36—C311.2 (12)
C3—C4—C10—C5178.5 (6)C43—P2—C37—C38159.7 (5)
C11—C4—C10—C53.3 (11)C31—P2—C37—C3893.0 (6)
C3—C4—C10—C90.8 (9)Ni1—P2—C37—C3838.7 (6)
C11—C4—C10—C9179.0 (6)C43—P2—C37—C4224.5 (6)
C8—C9—C10—C52.2 (9)C31—P2—C37—C4282.8 (6)
C1—C9—C10—C5178.3 (6)Ni1—P2—C37—C42145.5 (5)
C8—C9—C10—C4179.9 (6)C42—C37—C38—C392.0 (11)
C1—C9—C10—C40.4 (9)P2—C37—C38—C39174.0 (6)
C3—C4—C11—O1158.6 (9)C37—C38—C39—C400.9 (13)
C10—C4—C11—O119.7 (13)C38—C39—C40—C411.2 (13)
C3—C4—C11—C1220.7 (11)C39—C40—C41—C422.2 (13)
C10—C4—C11—C12161.1 (8)C38—C37—C42—C411.0 (10)
C19—P1—C13—C1899.9 (5)P2—C37—C42—C41174.8 (6)
C25—P1—C13—C188.8 (6)C40—C41—C42—C371.0 (12)
Ni1—P1—C13—C18129.5 (5)C37—P2—C43—C4893.3 (5)
C19—P1—C13—C1482.8 (5)C31—P2—C43—C48160.9 (5)
C25—P1—C13—C14168.5 (5)Ni1—P2—C43—C4830.9 (5)
Ni1—P1—C13—C1447.8 (5)C37—P2—C43—C4487.1 (6)
C18—C13—C14—C150.9 (10)C31—P2—C43—C4418.7 (6)
P1—C13—C14—C15178.3 (6)Ni1—P2—C43—C44148.7 (5)
C13—C14—C15—C161.1 (12)C48—C43—C44—C451.4 (10)
C14—C15—C16—C170.2 (12)P2—C43—C44—C45178.2 (5)
C15—C16—C17—C180.8 (12)C43—C44—C45—C460.8 (12)
C14—C13—C18—C170.1 (9)C44—C45—C46—C470.6 (12)
P1—C13—C18—C17177.1 (5)C45—C46—C47—C481.3 (12)
C16—C17—C18—C131.0 (11)C44—C43—C48—C470.6 (9)
C13—P1—C19—C2420.9 (6)P2—C43—C48—C47179.0 (5)
C25—P1—C19—C24133.0 (5)C46—C47—C48—C430.8 (10)

Experimental details

Crystal data
Chemical formula[Ni(C12H9O)Cl(C18H15P)2]·CH2Cl2
Mr872.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)21.203 (4), 10.957 (2), 21.048 (4)
β (°) 117.95 (3)
V3)4319.5 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.22 × 0.17 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995
Tmin, Tmax0.853, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
14070, 7579, 4611
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.182, 1.05
No. of reflections7579
No. of parameters505
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.53

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELX97 (Sheldrick, 2008).

 

Acknowledgements

We thank the National Natural Science Foundation of China (project No. 20672116) for financial support.

References

First citationBrandsma, L., Vasilevsky, S. F. & Verkruijsse, H. D. (1998). Application of Transition Metal Catalysts in Organic Synthesis, pp 3–4. New York: Springer.  Google Scholar
First citationChen, C. & Yang, L. M. (2007). Tetrahedron Lett. 48, 2427–2430.  Web of Science CrossRef CAS Google Scholar
First citationCramer, R. & Coulson, D. R. (1975). J. Org. Chem. 40, 2267–2273.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMorrell, D. G. & Kochi, J. K. (1975). J. Am. Chem. Soc. 97, 7262–7270.  CrossRef CAS Web of Science Google Scholar
First citationParshall, G. W. (1974). J. Am. Chem. Soc. 96, 2360–2366.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSemmelhack, M. F., Helquist, P. M. & Jones, L. D. (1971). J. Am. Chem. Soc. 93, 5908–5910.  CrossRef CAS Web of Science Google Scholar
First citationSemmelhack, M. F. & Ryono, L. S. (1975). J. Am. Chem. Soc. 97, 3873–3875.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoolinger, J. V., Verkruijsse, H. D., Keegstra, M. A. & Brandsma, L. (1990). Synth. Commun. 20, 3153–3156.  Google Scholar
First citationTsou, T. T. & Kochi, J. K. (1979a). J. Am. Chem. Soc. 101, 7547–7560.  CrossRef CAS Web of Science Google Scholar
First citationTsou, T. T. & Kochi, J. K. (1979b). J. Am. Chem. Soc. 101, 6319–6332.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds