organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-[Methyl­enebis(sulfanedi­yl)]bis­­(1,3,4-thia­diazol-2-amine)

aDepartment of Chemistry and Chemical Engineering, Daqing Normal University, 163712 Daqing, Heilongjiang, People's Republic of China
*Correspondence e-mail: klsz79@163.com

(Received 23 August 2008; accepted 18 September 2008; online 24 September 2008)

In the crystal structure of the title compound, C5H6N6S4, the mol­ecules are linked by strong N—H⋯N hydrogen bonds into a two-dimensional network and an intra­molecular C—H⋯S inter­action also occurs.

Related literature

For the multiple coordination environment of this ligand, see: Ma et al. (2007[Ma, C. L., Sun, J. S., Zhang, R. F. & Wang, D. Q. (2007). J. Organomet. Chem. 692, 4029-4042.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N6S4

  • Mr = 278.40

  • Triclinic, [P \overline 1]

  • a = 5.457 (3) Å

  • b = 7.316 (4) Å

  • c = 13.623 (8) Å

  • α = 81.746 (8)°

  • β = 88.864 (8)°

  • γ = 74.858 (8)°

  • V = 519.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 298 (2) K

  • 0.28 × 0.19 × 0.14 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.789, Tmax = 0.886

  • 2686 measured reflections

  • 1801 independent reflections

  • 1525 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.130

  • S = 1.00

  • 1801 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N5i 0.86 2.18 2.999 (4) 158
N6—H6A⋯N2i 0.86 2.18 3.023 (4) 168
N6—H6B⋯N1ii 0.86 2.19 3.021 (4) 162
C5—H5A⋯S1 0.97 2.82 3.364 (4) 116
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x+1, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

5-amino-4H-pyrazole-3-thiol ligand and its derivatives are widely studied because of their multiply coordination environment (Ma, et al., 2007). They represent a class of highly useful compounds in which the presence of S and N atoms renders various hydrogen bonding motifs leading to the formation of versatile supramolecular architecture. As continuous study of this ligand we report here the structure of the title compound,(I)(Fig. 1). In the crystal structure of the title compound, the molecules are linked by strong N—H···N hydrogen bonds into a two-dimensional network, Fig 2. An intramolecular C-H···S interaction also occurs.

Related literature top

For the multiple coordination environment of this ligand, see: Ma et al. (2007).

Experimental top

5-amino-1,3,4-thiadiazole-2-thiol(2 mmol), and sodium ethanolate were dissolved in ethanol, and the mixture was stirred for 4 h at 323 K. After cooling at room temperature, the solution was filtered. The solvent was removed from the filtrate under vacuum, and the solid residue was recrystallized from diethylether; colorless crystals suitable for X-Ray diffraction study were obtained. Yield, 81%. m.p. 368 K. Analysis, calculated for C5H6N6S4: C 21.57, H 2.17, N 30.19; found: C 21.36, H 2.43, N 30.32. The elemental analyses were performed with a Perkine Elemer PE2400II instrument.

Refinement top

The amido H atoms were placed in idealized positions and constrained to ride on their parent atoms, with amido N—H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(N) for the amido H atoms. The methylene H atoms could be located in difference Fourier maps. It was refined with distance restraints of C–H = 0.97 Å and Uiso(H)= 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis. Dashed lines show intermolecular hydrogen bonds.
5,5'-[Methylenebis(sulfanediyl)]bis(1,3,4-thiadiazol-2-amine) top
Crystal data top
C5H6N6S4Z = 2
Mr = 278.40F(000) = 284
Triclinic, P1Dx = 1.780 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.457 (3) ÅCell parameters from 1816 reflections
b = 7.316 (4) Åθ = 2.9–28.3°
c = 13.623 (8) ŵ = 0.89 mm1
α = 81.746 (8)°T = 298 K
β = 88.864 (8)°Block, colourless
γ = 74.858 (8)°0.28 × 0.19 × 0.14 mm
V = 519.5 (5) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
1801 independent reflections
Radiation source: fine-focus sealed tube1525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 56
Tmin = 0.789, Tmax = 0.886k = 78
2686 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.09P)2 + 0.0868P]
where P = (Fo2 + 2Fc2)/3
1801 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C5H6N6S4γ = 74.858 (8)°
Mr = 278.40V = 519.5 (5) Å3
Triclinic, P1Z = 2
a = 5.457 (3) ÅMo Kα radiation
b = 7.316 (4) ŵ = 0.89 mm1
c = 13.623 (8) ÅT = 298 K
α = 81.746 (8)°0.28 × 0.19 × 0.14 mm
β = 88.864 (8)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1801 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1525 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.886Rint = 0.034
2686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.00Δρmax = 0.47 e Å3
1801 reflectionsΔρmin = 0.65 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7436 (5)0.9404 (4)0.81430 (19)0.0378 (6)
N20.8979 (5)0.8670 (4)0.89745 (18)0.0391 (6)
N31.3224 (5)0.7099 (4)0.94128 (19)0.0466 (7)
H3A1.29120.70131.00370.056*
H3B1.47400.66460.92160.056*
N40.7147 (5)0.4974 (4)0.77661 (18)0.0393 (6)
N50.8645 (5)0.3914 (4)0.85485 (18)0.0404 (6)
N61.2775 (5)0.1997 (4)0.89166 (18)0.0417 (7)
H6A1.24820.18370.95410.050*
H6B1.42460.14720.87010.050*
S11.18916 (14)0.81717 (11)0.74813 (5)0.0366 (3)
S20.72542 (15)1.00787 (11)0.61469 (6)0.0398 (3)
S31.13900 (15)0.34844 (11)0.70097 (5)0.0378 (3)
S40.68122 (15)0.60763 (11)0.57878 (5)0.0403 (3)
C10.8660 (5)0.9238 (4)0.7323 (2)0.0311 (6)
C21.1362 (6)0.7931 (4)0.8752 (2)0.0336 (7)
C30.8273 (6)0.4904 (4)0.6922 (2)0.0329 (7)
C41.0953 (5)0.3057 (4)0.8283 (2)0.0307 (6)
C50.8374 (6)0.7999 (4)0.55130 (19)0.0375 (7)
H5A1.01700.74680.56680.045*
H5B0.82130.84330.48050.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0323 (14)0.0464 (15)0.0301 (13)0.0032 (11)0.0026 (11)0.0024 (11)
N20.0327 (14)0.0533 (15)0.0252 (12)0.0018 (11)0.0026 (10)0.0018 (11)
N30.0344 (15)0.0664 (18)0.0280 (13)0.0011 (13)0.0066 (11)0.0039 (13)
N40.0341 (14)0.0451 (14)0.0297 (13)0.0008 (11)0.0016 (11)0.0037 (11)
N50.0353 (15)0.0494 (15)0.0286 (13)0.0012 (12)0.0006 (11)0.0020 (11)
N60.0337 (14)0.0516 (16)0.0293 (13)0.0020 (12)0.0038 (11)0.0054 (12)
S10.0276 (4)0.0498 (5)0.0267 (4)0.0028 (3)0.0016 (3)0.0002 (3)
S20.0398 (5)0.0424 (5)0.0300 (4)0.0032 (3)0.0097 (3)0.0062 (3)
S30.0356 (5)0.0438 (5)0.0276 (4)0.0004 (3)0.0002 (3)0.0024 (3)
S40.0401 (5)0.0507 (5)0.0287 (4)0.0111 (4)0.0122 (3)0.0014 (3)
C10.0298 (15)0.0323 (14)0.0285 (14)0.0068 (12)0.0049 (12)0.0028 (11)
C20.0353 (16)0.0368 (15)0.0264 (14)0.0075 (12)0.0040 (12)0.0002 (12)
C30.0321 (15)0.0343 (15)0.0302 (15)0.0070 (12)0.0056 (12)0.0006 (12)
C40.0336 (16)0.0290 (14)0.0275 (14)0.0065 (12)0.0031 (12)0.0004 (11)
C50.0370 (17)0.0525 (18)0.0186 (13)0.0082 (14)0.0049 (12)0.0032 (12)
Geometric parameters (Å, º) top
N1—C11.295 (4)N6—H6B0.8600
N1—N21.381 (4)S1—C11.736 (3)
N2—C21.319 (4)S1—C21.741 (3)
N3—C21.330 (4)S2—C11.747 (3)
N3—H3A0.8600S2—C51.818 (3)
N3—H3B0.8600S3—C41.741 (3)
N4—C31.294 (4)S3—C31.742 (3)
N4—N51.368 (3)S4—C31.752 (3)
N5—C41.321 (4)S4—C51.819 (3)
N6—C41.332 (4)C5—H5A0.9700
N6—H6A0.8600C5—H5B0.9700
C1—N1—N2112.9 (2)S1—C1—S2121.83 (17)
C2—N2—N1112.6 (2)N2—C2—N3124.8 (3)
C2—N3—H3A120.0N2—C2—S1113.2 (2)
C2—N3—H3B120.0N3—C2—S1122.0 (2)
H3A—N3—H3B120.0N4—C3—S3113.7 (2)
C3—N4—N5113.4 (2)N4—C3—S4123.8 (2)
C4—N5—N4113.0 (2)S3—C3—S4122.55 (17)
C4—N6—H6A120.0N5—C4—N6124.1 (3)
C4—N6—H6B120.0N5—C4—S3112.8 (2)
H6A—N6—H6B120.0N6—C4—S3123.1 (2)
C1—S1—C286.94 (14)S2—C5—S4117.40 (16)
C1—S2—C5101.78 (13)S2—C5—H5A108.0
C4—S3—C387.09 (13)S4—C5—H5A108.0
C3—S4—C5101.31 (13)S2—C5—H5B108.0
N1—C1—S1114.3 (2)S4—C5—H5B108.0
N1—C1—S2123.8 (2)H5A—C5—H5B107.2
C1—N1—N2—C21.0 (4)N5—N4—C3—S30.1 (3)
C3—N4—N5—C40.9 (4)N5—N4—C3—S4178.7 (2)
N2—N1—C1—S10.7 (3)C4—S3—C3—N40.6 (2)
N2—N1—C1—S2178.4 (2)C4—S3—C3—S4179.3 (2)
C2—S1—C1—N11.5 (2)C5—S4—C3—N4107.8 (3)
C2—S1—C1—S2179.36 (19)C5—S4—C3—S373.5 (2)
C5—S2—C1—N1130.4 (3)N4—N5—C4—N6177.8 (3)
C5—S2—C1—S152.0 (2)N4—N5—C4—S31.4 (3)
N1—N2—C2—N3178.6 (3)C3—S3—C4—N51.1 (2)
N1—N2—C2—S12.2 (3)C3—S3—C4—N6178.1 (3)
C1—S1—C2—N22.1 (2)C1—S2—C5—S477.73 (18)
C1—S1—C2—N3178.7 (3)C3—S4—C5—S279.41 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N5i0.862.182.999 (4)158
N6—H6A···N2i0.862.183.023 (4)168
N6—H6B···N1ii0.862.193.021 (4)162
C5—H5A···S10.972.823.364 (4)116
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC5H6N6S4
Mr278.40
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.457 (3), 7.316 (4), 13.623 (8)
α, β, γ (°)81.746 (8), 88.864 (8), 74.858 (8)
V3)519.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.28 × 0.19 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.789, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
2686, 1801, 1525
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.00
No. of reflections1801
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.65

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N5i0.862.182.999 (4)158
N6—H6A···N2i0.862.183.023 (4)168
N6—H6B···N1ii0.862.193.021 (4)162
C5—H5A···S10.972.823.364 (4)116
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y1, z.
 

Acknowledgements

The authors thank the Postgraduate Foundation of Taishan University (No. Y07-2-15) for financial support.

References

First citationMa, C. L., Sun, J. S., Zhang, R. F. & Wang, D. Q. (2007). J. Organomet. Chem. 692, 4029–4042.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds