organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Bromo-5-chloro-2-hy­droxy­benzyl­­idene)-4-hydr­oxybenzohydrazide

aCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan Henan 467000, People's Republic of China
*Correspondence e-mail: pdsuchemistry@163.com

(Received 5 September 2008; accepted 10 September 2008; online 13 September 2008)

The mol­ecule of the title compound, C14H10BrClN2O3, is planar [dihedral angle between the aromatic rings = 3.0 (2)°] and shows a trans configuration with respect to the C=N double bond. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds and an intramolecular O—H⋯N interaction also occurs.

Related literature

For the biological properties of Schiff bases, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]); Sondhi et al. (2006[Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758-3765.]); Singh et al. (2006[Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147-153.]). For background on Schiff bases derived from aldehydes with benzohydrazides, see: He & Liu (2005[He, Y.-Z. & Liu, D.-Z. (2005). Acta Cryst. E61, o3855-o3856.]); Zhen & Han (2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360-o4361.]); Diao & Yu (2006[Diao, C.-H. & Yu, M. (2006). Acta Cryst. E62, o5278-o5279.]); Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]). For related structures, see: Jing et al. (2005[Jing, Z.-L., Wang, X.-Y., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o4316-o4317.]); Lu et al. (2008[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1694.]); Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrClN2O3

  • Mr = 369.60

  • Monoclinic, P 21 /n

  • a = 8.279 (2) Å

  • b = 11.446 (3) Å

  • c = 14.998 (4) Å

  • β = 99.002 (4)°

  • V = 1403.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 298 (2) K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.618, Tmax = 0.651

  • 10685 measured reflections

  • 3006 independent reflections

  • 2102 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.03

  • 3006 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.90 (3) 2.17 (3) 2.922 (3) 140 (3)
O1—H1⋯N1 0.82 1.91 2.623 (3) 146
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are a kind of versatile compounds, which possess excellent biological properties (Bhandari et al., 2008; Sinha et al., 2008; Sondhi et al., 2006; Singh et al., 2006). Recently, a large number of Schiff bases derived from the reaction of aldehydes with benzohydrazides have been reported (He & Liu, 2005; Zhen & Han, 2005; Diao & Yu, 2006; Shan et al., 2008; Fun et al., 2008). In this paper, a new Schiff base, (I), Fig. 1, derived from the reaction of 3-bromo-5-chlorosalicylaldehyde with 4-hydroxybenzohydrazide is reported. The title Schiff base is a planar-shaped compound, with mean deviation from the least-squares plane of 0.064 (3)Å, and with the dihedral angle between the C1-C6 and C9-C14 phenyl rings of 3.0 (2)°. All the bond lengths are comparable to the values in the similar Schiff bases (Jing et al., 2005; Lu et al., 2008; Salhin et al., 2007). There is a intramolecular O—H···N hydrogen bond (Fig. 1). In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds , to form a 3-D network (Table 1) (Fig. 2).

Related literature top

For the biological properties of Schiff bases, see: Bhandari et al. (2008); Sinha et al. (2008); Sondhi et al. (2006); Singh et al. (2006). For background on Schiff bases derived from aldehydes with benzohydrazides, see: He & Liu (2005); Zhen & Han (2005); Diao & Yu (2006); Shan et al. (2008); Fun et al. (2008). For related structures see Jing et al. (2005); Lu et al. (2008); Salhin et al. (2007).

Experimental top

3-Bromo-5-chlorosalicylaldehyde and 4-hydroxybenzohydrazide of AR grade were purchased from Aldrich and were used as was obtained. 3-Bromo-5-chlorosalicylaldehyde (235.3 mg, 1.0 mmol) and 4-hydroxybenzohydrazide (152.2 mg, 1.0 mmol) were dissolved in a methanol solution (80 ml). The mixture was stirred for two hours at room temperature. The resulting solution was left in air for a few days, yielding colourless block-like crystals.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (3)Å, and with Uiso(H) fixed at 0.08Å2. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93Å, O—H distance of 0.82Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 30% probability displacement ellipsoids. dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The molecular packing of (I). Intermolecular hydrogen bonds are shown as dashed lines. H atoms unrelated to the hydrogen bonding have been omitted for clarity.
N'-(3-Bromo-5-chloro-2-hydroxybenzylidene)-4-hydroxybenzohydrazide top
Crystal data top
C14H10BrClN2O3F(000) = 736
Mr = 369.60Dx = 1.749 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.279 (2) ÅCell parameters from 2405 reflections
b = 11.446 (3) Åθ = 2.3–24.6°
c = 14.998 (4) ŵ = 3.13 mm1
β = 99.002 (4)°T = 298 K
V = 1403.7 (6) Å3Block, colourless
Z = 40.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3006 independent reflections
Radiation source: fine-focus sealed tube2102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.618, Tmax = 0.651k = 1414
10685 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.1022P]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C14H10BrClN2O3V = 1403.7 (6) Å3
Mr = 369.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.279 (2) ŵ = 3.13 mm1
b = 11.446 (3) ÅT = 298 K
c = 14.998 (4) Å0.17 × 0.15 × 0.15 mm
β = 99.002 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3006 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2102 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.651Rint = 0.049
10685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.50 e Å3
3006 reflectionsΔρmin = 0.36 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.16504 (5)0.88843 (3)1.28591 (2)0.05440 (17)
Cl11.19663 (10)0.56024 (7)1.02050 (6)0.0436 (2)
N10.7282 (3)0.9996 (2)0.98662 (16)0.0299 (6)
N20.6142 (3)1.0530 (2)0.92314 (15)0.0303 (6)
O10.9168 (3)0.98960 (19)1.14418 (14)0.0409 (5)
H10.84791.01831.10510.061*
O20.5803 (3)1.20014 (17)1.01833 (13)0.0387 (5)
O30.0964 (3)1.38132 (18)0.68220 (14)0.0426 (6)
H30.09781.35530.63140.064*
C10.9178 (3)0.8455 (2)1.02657 (18)0.0275 (6)
C20.9719 (3)0.8893 (2)1.11358 (19)0.0278 (6)
C31.0902 (4)0.8268 (3)1.17019 (18)0.0314 (7)
C41.1560 (4)0.7256 (3)1.1431 (2)0.0351 (7)
H41.23410.68471.18240.042*
C51.1051 (4)0.6856 (3)1.0573 (2)0.0323 (7)
C60.9868 (4)0.7438 (3)0.9991 (2)0.0324 (7)
H60.95320.71490.94120.039*
C70.7930 (4)0.9061 (3)0.9632 (2)0.0327 (7)
H70.76100.87600.90560.039*
C80.5482 (4)1.1559 (3)0.94328 (19)0.0283 (7)
C90.4350 (3)1.2130 (2)0.87016 (17)0.0258 (6)
C100.3617 (4)1.3161 (3)0.89023 (19)0.0344 (7)
H100.38881.34820.94760.041*
C110.2498 (4)1.3723 (3)0.8275 (2)0.0375 (8)
H110.20091.44120.84260.045*
C120.2103 (4)1.3258 (3)0.74178 (18)0.0287 (7)
C130.2856 (4)1.2251 (3)0.71958 (18)0.0349 (7)
H130.26151.19480.66150.042*
C140.3965 (4)1.1692 (3)0.78333 (19)0.0339 (7)
H140.44651.10090.76790.041*
H20.577 (5)1.016 (3)0.8710 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0585 (3)0.0637 (3)0.0345 (2)0.00635 (19)0.01299 (16)0.01098 (17)
Cl10.0499 (5)0.0294 (4)0.0502 (5)0.0096 (4)0.0043 (4)0.0043 (4)
N10.0290 (13)0.0281 (14)0.0296 (13)0.0019 (11)0.0045 (10)0.0072 (11)
N20.0334 (14)0.0286 (14)0.0251 (13)0.0009 (11)0.0071 (10)0.0026 (11)
O10.0468 (14)0.0366 (13)0.0358 (13)0.0113 (11)0.0046 (10)0.0055 (10)
O20.0562 (14)0.0317 (12)0.0229 (11)0.0037 (10)0.0105 (9)0.0004 (9)
O30.0609 (15)0.0360 (13)0.0264 (11)0.0180 (11)0.0070 (11)0.0015 (9)
C10.0285 (16)0.0244 (16)0.0278 (15)0.0028 (13)0.0009 (12)0.0029 (12)
C20.0281 (16)0.0255 (16)0.0288 (15)0.0008 (13)0.0006 (12)0.0007 (12)
C30.0298 (16)0.0368 (18)0.0251 (15)0.0048 (14)0.0040 (12)0.0032 (13)
C40.0330 (17)0.0341 (18)0.0368 (18)0.0013 (14)0.0011 (13)0.0044 (14)
C50.0335 (17)0.0258 (17)0.0376 (17)0.0019 (13)0.0056 (13)0.0002 (13)
C60.0358 (17)0.0311 (18)0.0283 (16)0.0039 (14)0.0009 (13)0.0006 (13)
C70.0356 (18)0.0313 (18)0.0288 (16)0.0059 (14)0.0023 (13)0.0023 (13)
C80.0301 (16)0.0251 (16)0.0274 (16)0.0075 (13)0.0023 (12)0.0043 (12)
C90.0300 (16)0.0243 (16)0.0214 (14)0.0063 (13)0.0009 (11)0.0043 (12)
C100.052 (2)0.0295 (18)0.0191 (14)0.0013 (15)0.0020 (13)0.0031 (12)
C110.056 (2)0.0253 (17)0.0296 (17)0.0130 (15)0.0001 (15)0.0038 (13)
C120.0373 (17)0.0239 (16)0.0227 (15)0.0020 (13)0.0023 (12)0.0057 (12)
C130.051 (2)0.0319 (18)0.0185 (15)0.0053 (15)0.0046 (13)0.0041 (12)
C140.0457 (19)0.0232 (16)0.0299 (16)0.0090 (14)0.0031 (13)0.0029 (13)
Geometric parameters (Å, º) top
Br1—C31.886 (3)C4—C51.369 (4)
Cl1—C51.751 (3)C4—H40.9300
N1—C71.271 (4)C5—C61.378 (4)
N1—N21.375 (3)C6—H60.9300
N2—C81.353 (4)C7—H70.9300
N2—H20.90 (3)C8—C91.478 (4)
O1—C21.343 (3)C9—C101.381 (4)
O1—H10.8200C9—C141.385 (4)
O2—C81.225 (3)C10—C111.372 (4)
O3—C121.353 (3)C10—H100.9300
O3—H30.8200C11—C121.383 (4)
C1—C61.387 (4)C11—H110.9300
C1—C21.404 (4)C12—C131.376 (4)
C1—C71.464 (4)C13—C141.376 (4)
C2—C31.390 (4)C13—H130.9300
C3—C41.368 (4)C14—H140.9300
C7—N1—N2117.2 (2)N1—C7—C1120.4 (3)
C8—N2—N1119.4 (2)N1—C7—H7119.8
C8—N2—H2120 (3)C1—C7—H7119.8
N1—N2—H2120 (3)O2—C8—N2121.8 (3)
C2—O1—H1109.5O2—C8—C9121.4 (3)
C12—O3—H3109.5N2—C8—C9116.8 (2)
C6—C1—C2119.3 (3)C10—C9—C14118.0 (3)
C6—C1—C7119.1 (3)C10—C9—C8117.7 (2)
C2—C1—C7121.6 (3)C14—C9—C8124.3 (3)
O1—C2—C3118.4 (3)C11—C10—C9121.6 (3)
O1—C2—C1123.2 (3)C11—C10—H10119.2
C3—C2—C1118.4 (3)C9—C10—H10119.2
C4—C3—C2122.0 (3)C10—C11—C12119.5 (3)
C4—C3—Br1120.1 (2)C10—C11—H11120.2
C2—C3—Br1117.9 (2)C12—C11—H11120.2
C3—C4—C5119.0 (3)O3—C12—C13122.0 (3)
C3—C4—H4120.5O3—C12—C11118.2 (3)
C5—C4—H4120.5C13—C12—C11119.8 (3)
C4—C5—C6121.2 (3)C14—C13—C12120.0 (3)
C4—C5—Cl1119.1 (2)C14—C13—H13120.0
C6—C5—Cl1119.7 (2)C12—C13—H13120.0
C5—C6—C1120.2 (3)C13—C14—C9121.0 (3)
C5—C6—H6119.9C13—C14—H14119.5
C1—C6—H6119.9C9—C14—H14119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.90 (3)2.17 (3)2.922 (3)140 (3)
O1—H1···N10.821.912.623 (3)146
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H10BrClN2O3
Mr369.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.279 (2), 11.446 (3), 14.998 (4)
β (°) 99.002 (4)
V3)1403.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.618, 0.651
No. of measured, independent and
observed [I > 2σ(I)] reflections
10685, 3006, 2102
Rint0.049
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.03
No. of reflections3006
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.90 (3)2.17 (3)2.922 (3)140 (3)
O1—H1···N10.821.912.623 (3)145.5
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

We thank the Top-Class Foundation and the Applied Chemistry Key Laboratory Foundation of Pingdingshan University.

References

First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, C.-H. & Yu, M. (2006). Acta Cryst. E62, o5278–o5279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Y.-Z. & Liu, D.-Z. (2005). Acta Cryst. E61, o3855–o3856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, Z.-L., Wang, X.-Y., Chen, X. & Deng, Q.-L. (2005). Acta Cryst. E61, o4316–o4317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153.  Web of Science CrossRef PubMed Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360–o4361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds