organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Formyl-2-meth­­oxy-3-nitro­phenyl 4-toluene­sulfonate

aDepartment of Chemistry, Valliammai Engineering College, SRM Nagar, Chennai, Tamil Nadu, India, bDepartment of Chemistry, Presidency College, Chennai, India, and cDepartment of Chemistry, Indian Institute of Technology Madras, Chennai-36, Tamil Nadu, India
*Correspondence e-mail: charlesckin@yahoo.com

(Received 6 September 2008; accepted 16 September 2008; online 30 September 2008)

In the title compound, C15H13NO7S, the inter­planar angle between the two aromatic rings is 26.04 (3)°. The crystal structure is stabilized by C—H⋯O interactions.

Related literature

For general background, see: Alford et al. (1991[Alford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611-9.]); Baldessarini (1987[Baldessarini, R. J. (1987). Am J. Med, 83, 95-103.]); Jiang et al. (1990[Jiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139-149.]); Spungin et al. (1992[Spungin, B., Levinshal, T., Rubenstein, S. & Breithart, H. (1992). FEBS Lett. 311, 155-160.]); Tharakan et al. (1992[Tharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J Chromatogr. 595, 103-111.]); Yachi et al. (1989[Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochem Biophys Acta, 1978, 1-7 .]). For related structures, see: Ramachandran et al. (2007[Ramachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.]); Ramachandran, Kanakam & Manivannan (2008[Ramachandran, G., Kanakam, C. C. & Manivannan, V. (2008). Acta Cryst. E64, o873.]); Ramachandran, Kanakam, Gunasekaran & Manivannan (2008[Ramachandran, G., Kanakam, C. C., Gunasekaran, B. & Manivannan, V. (2008). Acta Cryst. E64, o1760.]); Ramachandran, Suresh, Chakkaravarthi et al. (2008[Ramachandran, G., Suresh, R., Chakkaravarthi, G., Kanakam, C. C. & Manivannan, V. (2008). Acta Cryst. E64, o1576.]); Manivannan et al. (2005a[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239-o241.],b[Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242-o244.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO7S

  • Mr = 351.32

  • Triclinic, [P \overline 1]

  • a = 8.1883 (16) Å

  • b = 9.5511 (19) Å

  • c = 10.530 (2) Å

  • α = 86.022 (3)°

  • β = 87.294 (3)°

  • γ = 73.588 (3)°

  • V = 787.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 (2) K

  • 0.42 × 0.32 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.951

  • 9176 measured reflections

  • 3647 independent reflections

  • 2897 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.02

  • 3647 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O6i 0.93 2.70 3.335 (3) 125
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several compounds containing p-toluene sulfonate (PTS) moiety were used in the fields of biology and industry. The merging of lipids can be monitored using derivatives of p-toluene sulfonates (Yachi, et al., 1989). This method has been used in studying the membrane fusion during the acrosome reaction (Spungin, et al., 1992). PTS are used to purify human coagulation factor (Tharakan, et al., 1992) in the study of viruses (Alford, et al., 1991) and in the development of technology for linking photosensitizer to a model of monoclonal antibody (Jiang, et al., 1990). In the field of pharmacology for the study of neuro pharmacology of s-adenosyl –L– methionine, PTS is used (Baldessarini, 1987). Because of the wide variety of biological importance of PTS, the synthesis of several substituted sulfonates and the study of their single-crystal XRD studies continues to be an interesting field of research. In the present paper, the synthesis and characterization by single-crystal study of the title compound is reported. In the title compound, the dihedral angle between the two aromatic rings is 26.04 (3)°.The geometric parameters agree with the reported values of similar structures (Manivannan et al., 2005a, b; Ramachandran et al., 2007). The angle between the O7—S1—O6 is 119.12 (11)°, which is greater than the tetrahedral angle, leading to the decrease in the O5—S1—C9 angle which is 97.9 (8)°. The eclipsed conformation of the sulfonyl moiety is confirmed by the torsion angle of O7—S1—C9—C14 = -19.3 (3)° and O6—S1—C9—C10 = 26.04 (19)°. The crystal packing is stabilized by Van der Waals interaction.

Related literature top

For related literature, see: Alford et al. (1991); Baldessarini (1987); Jiang et al. (1990); Ramachandran et al. (2007); Ramachandran, Kanakam & Manivannan (2008); Ramachandran, Kanakam, Gunasekaran & Manivannan (2008); Ramachandran, Suresh, Chakkaravarthi et al. (2008); Manivannan et al. (2005a,b); Spungin et al. (1992); Tharakan et al. (1992); Yachi et al. (1989).

Experimental top

Acetylation of vanillin with acetic anhydride in presence of sodium acetate yielded acetyl vanillin. Powdered o-vanillin acetate was added to a stirred mixture of fuming HNO3 and concentrate H2SO4. The nitrated material was then hydrolyzed in 2% sodium hydroxide. The orange yellow solid was filtered and the filtrate was acidified to get the 4-nitro-2-hydroxy-3methoxy benzaldehyde. The benzaldehyde and triethylamine were dissolved in acetone and treated with 4-toluene sulfonyl chloride. The residue obtained was washed with 2% aqueous triethylamine solution to obtain the crude product. Diffraction quality crystals were obtained by recrystallizing the crude product from ethanol.

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
6-Formyl-2-methoxy-3-nitrophenyl 4-toluenesulfonate top
Crystal data top
C15H13NO7SZ = 2
Mr = 351.32F(000) = 364
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1883 (16) ÅCell parameters from 873 reflections
b = 9.5511 (19) Åθ = 2.6–26.3°
c = 10.530 (2) ŵ = 0.24 mm1
α = 86.022 (3)°T = 298 K
β = 87.294 (3)°Block, yellow
γ = 73.588 (3)°0.42 × 0.32 × 0.21 mm
V = 787.8 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3647 independent reflections
Radiation source: fine-focus sealed tube2897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1010
Tmin = 0.905, Tmax = 0.951k = 1212
9176 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.1932P]
where P = (Fo2 + 2Fc2)/3
3647 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H13NO7Sγ = 73.588 (3)°
Mr = 351.32V = 787.8 (3) Å3
Triclinic, P1Z = 2
a = 8.1883 (16) ÅMo Kα radiation
b = 9.5511 (19) ŵ = 0.24 mm1
c = 10.530 (2) ÅT = 298 K
α = 86.022 (3)°0.42 × 0.32 × 0.21 mm
β = 87.294 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3647 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2897 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.951Rint = 0.018
9176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
3647 reflectionsΔρmin = 0.24 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7558 (2)0.10359 (19)0.96696 (18)0.0478 (4)
C20.6751 (2)0.1421 (2)1.0781 (2)0.0538 (5)
H20.64310.22841.08390.065*
C30.6428 (2)0.0544 (2)1.1783 (2)0.0562 (5)
H30.58770.08011.25170.067*
C40.6923 (2)0.0729 (2)1.17052 (18)0.0517 (4)
C50.7671 (2)0.12023 (18)1.06001 (18)0.0456 (4)
C60.7967 (2)0.02845 (18)0.95936 (17)0.0426 (4)
C70.7991 (3)0.2053 (2)0.8626 (2)0.0658 (6)
C80.6935 (3)0.3798 (2)1.0658 (3)0.0804 (7)
H8A0.58540.37541.03750.121*
H8B0.72670.45721.01820.121*
H8C0.68440.39811.15470.121*
C90.9340 (2)0.2467 (2)0.67574 (17)0.0476 (4)
C100.9440 (3)0.3730 (2)0.7267 (2)0.0585 (5)
H100.86760.41550.79070.070*
C111.0702 (3)0.4352 (2)0.6806 (2)0.0613 (5)
H111.07710.52110.71360.074*
C121.1854 (3)0.3732 (2)0.58733 (19)0.0541 (5)
C131.1713 (3)0.2464 (2)0.5368 (2)0.0603 (5)
H131.24770.20390.47290.072*
C141.0458 (3)0.1830 (2)0.58002 (19)0.0569 (5)
H141.03660.09870.54530.068*
C151.3252 (3)0.4399 (3)0.5411 (3)0.0757 (7)
H15A1.29010.54270.55410.114*
H15B1.34820.42540.45200.114*
H15C1.42630.39400.58760.114*
N10.6741 (3)0.1525 (2)1.28715 (19)0.0734 (5)
S10.77841 (6)0.16535 (5)0.73509 (5)0.05360 (17)
O10.7587 (3)0.3163 (2)0.8658 (2)0.1075 (7)
O20.5469 (3)0.1609 (3)1.3527 (2)0.1279 (9)
O30.7902 (3)0.1989 (2)1.31513 (18)0.0950 (6)
O40.81953 (17)0.24287 (14)1.04624 (14)0.0588 (4)
O50.88441 (15)0.06651 (13)0.85158 (12)0.0497 (3)
O60.63603 (17)0.26914 (17)0.78802 (15)0.0685 (4)
O70.7507 (2)0.0679 (2)0.64859 (16)0.0786 (5)
H70.862 (3)0.182 (3)0.796 (2)0.074 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0396 (8)0.0408 (8)0.0614 (11)0.0089 (7)0.0029 (8)0.0005 (8)
C20.0463 (10)0.0454 (9)0.0704 (12)0.0169 (8)0.0019 (9)0.0074 (9)
C30.0443 (10)0.0623 (11)0.0601 (11)0.0158 (8)0.0031 (8)0.0110 (9)
C40.0417 (9)0.0566 (10)0.0536 (10)0.0085 (8)0.0008 (8)0.0053 (8)
C50.0359 (8)0.0404 (8)0.0597 (10)0.0099 (7)0.0024 (7)0.0002 (8)
C60.0331 (8)0.0425 (8)0.0507 (9)0.0098 (6)0.0006 (7)0.0032 (7)
C70.0707 (14)0.0507 (11)0.0770 (15)0.0181 (10)0.0055 (12)0.0123 (10)
C80.0891 (17)0.0435 (11)0.1050 (19)0.0107 (11)0.0060 (15)0.0103 (12)
C90.0500 (10)0.0507 (9)0.0465 (9)0.0226 (8)0.0023 (7)0.0022 (7)
C100.0620 (12)0.0551 (11)0.0620 (12)0.0225 (9)0.0110 (9)0.0115 (9)
C110.0699 (13)0.0498 (10)0.0722 (13)0.0295 (10)0.0039 (10)0.0093 (9)
C120.0572 (11)0.0548 (10)0.0553 (10)0.0262 (9)0.0025 (9)0.0082 (9)
C130.0651 (12)0.0697 (12)0.0516 (11)0.0289 (10)0.0128 (9)0.0075 (9)
C140.0693 (12)0.0589 (11)0.0516 (10)0.0324 (10)0.0041 (9)0.0100 (9)
C150.0691 (14)0.0796 (15)0.0879 (16)0.0416 (12)0.0041 (12)0.0126 (13)
N10.0743 (13)0.0818 (13)0.0614 (11)0.0165 (11)0.0068 (10)0.0140 (10)
S10.0482 (3)0.0630 (3)0.0554 (3)0.0270 (2)0.0066 (2)0.0082 (2)
O10.1421 (19)0.0669 (11)0.1292 (17)0.0530 (12)0.0317 (14)0.0372 (11)
O20.1049 (16)0.185 (2)0.0988 (16)0.0444 (17)0.0474 (14)0.0604 (17)
O30.1123 (15)0.1068 (14)0.0786 (12)0.0459 (13)0.0068 (11)0.0262 (11)
O40.0565 (8)0.0453 (7)0.0785 (9)0.0205 (6)0.0023 (7)0.0070 (6)
O50.0402 (6)0.0538 (7)0.0535 (7)0.0130 (5)0.0029 (5)0.0052 (6)
O60.0433 (7)0.0758 (9)0.0808 (10)0.0136 (7)0.0020 (7)0.0215 (8)
O70.0926 (12)0.0985 (12)0.0683 (9)0.0644 (10)0.0141 (8)0.0003 (9)
Geometric parameters (Å, º) top
C1—C61.390 (2)C9—C141.381 (3)
C1—C21.395 (3)C9—S11.7417 (18)
C1—C71.481 (3)C10—C111.385 (3)
C2—C31.362 (3)C10—H100.9300
C2—H20.9300C11—C121.372 (3)
C3—C41.382 (3)C11—H110.9300
C3—H30.9300C12—C131.391 (3)
C4—C51.397 (3)C12—C151.507 (3)
C4—N11.469 (3)C13—C141.378 (3)
C5—O41.353 (2)C13—H130.9300
C5—C61.391 (3)C14—H140.9300
C6—O51.396 (2)C15—H15A0.9600
C7—O11.195 (3)C15—H15B0.9600
C7—H70.90 (3)C15—H15C0.9600
C8—O41.439 (3)N1—O21.208 (3)
C8—H8A0.9600N1—O31.212 (3)
C8—H8B0.9600S1—O71.4157 (17)
C8—H8C0.9600S1—O61.4194 (16)
C9—C101.378 (3)S1—O51.6206 (13)
C6—C1—C2118.45 (17)C9—C10—H10120.7
C6—C1—C7122.12 (18)C11—C10—H10120.7
C2—C1—C7119.42 (18)C12—C11—C10121.56 (18)
C3—C2—C1120.55 (17)C12—C11—H11119.2
C3—C2—H2119.7C10—C11—H11119.2
C1—C2—H2119.7C11—C12—C13118.60 (17)
C2—C3—C4119.79 (18)C11—C12—C15120.86 (19)
C2—C3—H3120.1C13—C12—C15120.5 (2)
C4—C3—H3120.1C14—C13—C12121.05 (19)
C3—C4—C5122.26 (18)C14—C13—H13119.5
C3—C4—N1117.05 (18)C12—C13—H13119.5
C5—C4—N1120.54 (18)C13—C14—C9118.86 (18)
O4—C5—C6118.41 (16)C13—C14—H14120.6
O4—C5—C4125.31 (17)C9—C14—H14120.6
C6—C5—C4116.20 (16)C12—C15—H15A109.5
C1—C6—C5122.61 (16)C12—C15—H15B109.5
C1—C6—O5119.59 (16)H15A—C15—H15B109.5
C5—C6—O5117.56 (15)C12—C15—H15C109.5
O1—C7—C1122.8 (2)H15A—C15—H15C109.5
O1—C7—H7120.0 (16)H15B—C15—H15C109.5
C1—C7—H7117.2 (16)O2—N1—O3124.0 (2)
O4—C8—H8A109.5O2—N1—C4117.3 (2)
O4—C8—H8B109.5O3—N1—C4118.5 (2)
H8A—C8—H8B109.5O7—S1—O6119.12 (11)
O4—C8—H8C109.5O7—S1—O5107.06 (9)
H8A—C8—H8C109.5O6—S1—O5107.89 (8)
H8B—C8—H8C109.5O7—S1—C9111.02 (10)
C10—C9—C14121.31 (17)O6—S1—C9111.53 (9)
C10—C9—S1119.04 (15)O5—S1—C997.91 (8)
C14—C9—S1119.64 (14)C5—O4—C8117.22 (16)
C9—C10—C11118.60 (19)C6—O5—S1119.51 (10)
C6—C1—C2—C32.3 (3)C10—C11—C12—C15178.1 (2)
C7—C1—C2—C3176.22 (18)C11—C12—C13—C140.7 (3)
C1—C2—C3—C40.8 (3)C15—C12—C13—C14178.8 (2)
C2—C3—C4—C53.5 (3)C12—C13—C14—C90.5 (3)
C2—C3—C4—N1172.22 (18)C10—C9—C14—C131.1 (3)
C3—C4—C5—O4179.50 (17)S1—C9—C14—C13178.09 (17)
N1—C4—C5—O43.9 (3)C3—C4—N1—O240.7 (3)
C3—C4—C5—C62.9 (3)C5—C4—N1—O2143.5 (2)
N1—C4—C5—C6172.72 (16)C3—C4—N1—O3135.6 (2)
C2—C1—C6—C52.9 (3)C5—C4—N1—O340.2 (3)
C7—C1—C6—C5175.55 (17)C10—C9—S1—O7161.44 (16)
C2—C1—C6—O5177.10 (15)C14—C9—S1—O719.3 (2)
C7—C1—C6—O51.3 (3)C10—C9—S1—O626.04 (19)
O4—C5—C6—C1176.49 (15)C14—C9—S1—O6154.70 (16)
C4—C5—C6—C10.4 (2)C10—C9—S1—O586.80 (17)
O4—C5—C6—O52.2 (2)C14—C9—S1—O592.45 (17)
C4—C5—C6—O5174.69 (14)C6—C5—O4—C8124.5 (2)
C6—C1—C7—O1176.9 (2)C4—C5—O4—C858.9 (3)
C2—C1—C7—O14.7 (3)C1—C6—O5—S193.43 (17)
C14—C9—C10—C110.5 (3)C5—C6—O5—S192.07 (17)
S1—C9—C10—C11178.74 (17)O7—S1—O5—C692.32 (14)
C9—C10—C11—C120.8 (3)O6—S1—O5—C637.02 (15)
C10—C11—C12—C131.4 (3)C9—S1—O5—C6152.75 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.703.335 (3)125
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H13NO7S
Mr351.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1883 (16), 9.5511 (19), 10.530 (2)
α, β, γ (°)86.022 (3), 87.294 (3), 73.588 (3)
V3)787.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.42 × 0.32 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.905, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
9176, 3647, 2897
Rint0.018
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.03
No. of reflections3647
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O6i0.932.703.335 (3)125
Symmetry code: (i) x+1, y, z+2.
 

References

First citationAlford, R. L., Honda, S., Lawrence, C. B. & Belmont, J. W. (1991). Virology, 183, 611-9.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBaldessarini, R. J. (1987). Am J. Med, 83, 95–103.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJiang, S., Liu, D., Richter, A. & Levy, J. G. (1990). J. Immunol. Methods, 134, 139–149.  CrossRef CAS PubMed Web of Science Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005a). Acta Cryst. E61, o239–o241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Fronczek, F. R. (2005b). Acta Cryst. E61, o242–o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, G., Kanakam, C. C., Gunasekaran, B. & Manivannan, V. (2008). Acta Cryst. E64, o1760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, G., Kanakam, C. C. & Manivannan, V. (2008). Acta Cryst. E64, o873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, G., Kanakam, C. C., Manivannan, V., Thiruvenkatam, V. & Row, T. N. G. (2007). Acta Cryst. E63, o4638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamachandran, G., Suresh, R., Chakkaravarthi, G., Kanakam, C. C. & Manivannan, V. (2008). Acta Cryst. E64, o1576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpungin, B., Levinshal, T., Rubenstein, S. & Breithart, H. (1992). FEBS Lett. 311, 155–160.  CrossRef PubMed CAS Web of Science Google Scholar
First citationTharakan, J., Highsmith, F., Clark, D. & Drohsn, W. (1992). J Chromatogr. 595, 103–111.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochem Biophys Acta, 1978, 1–7 .  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds