organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,4-Di­chloro­phenyl)-2-(1H-indol-3-yl)-6-methoxypyridine-3,5-dicarbo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 11 August 2008; accepted 28 August 2008; online 6 September 2008)

In the title compound, C22H12Cl2N4O, the indole ring system and the benzene ring form dihedral angles of 21.18 (7)° and 68.43 (8)°, respectively, with the pyridine ring. The meth­oxy group is coplanar with the pyridine ring. In the crystal structure N—H⋯N inter­molecular hydrogen bonds link the mol­ecules into C(10) chains running along [011]. Intramolec­ular C—H⋯N hydrogen bonds are also observed.

Related literature

For related literature, see: James et al. (1991[James, D., Kunz, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.]); Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agmi, K., Shigmori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617-6622.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]). For graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H12Cl2N4O

  • Mr = 419.26

  • Triclinic, [P \overline 1]

  • a = 9.5394 (2) Å

  • b = 10.0358 (2) Å

  • c = 11.1739 (3) Å

  • α = 111.994 (1)°

  • β = 97.303 (1)°

  • γ = 93.715 (1)°

  • V = 976.46 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 (2) K

  • 0.58 × 0.40 × 0.28 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.821, Tmax = 0.907

  • 10781 measured reflections

  • 3401 independent reflections

  • 3019 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.05

  • 3401 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1 0.93 2.56 3.045 (2) 113
C15—H15⋯N17 0.93 2.56 3.282 (2) 135
N14—H14⋯N25i 0.83 (2) 2.22 (2) 2.996 (2) 156 (2)
Symmetry code: (i) x, y+1, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.])); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Spiro compounds are the naturally occurring substances which exibit many biological properties (Kobayashi et al., 1991; James et al., 1991). Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran et al.., 1999). In view of this an X-ray diffraction study of the title compound was carrid out.

The indole ring system is essentially planar. The indole ring system and the benzene ring form dihedral angles of 21.18 (7)° and 68.43 (8)°, respectively, with the pyridine ring. The methoxy group is coplanar with the pyridine ring, with the C26—O1—C6—N1 torsion angle being 4.9 (2)°. C—H···N type intramolecular hydrogen bonds are observed in the molecular structure.

In the crystal structure N—H···N intermolecular hydrogen bonds link the molecules into C(10) chains (Bernstein et al., 1995) running along the [0 1 1].

Related literature top

For related literature, see: James et al. (1991); Kobayashi et al. (1991); Rajeswaran et al. (1999). For graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-cyanoacetyl indole (1 mmol), 2,4 dichlorobenzaldehyde (1 mmol) and sodium hydroxide (1.2 mmol) in methanol was refluxed. After 15 min malanonitrile (1 mmol) was added and the reflux was continued for 4 h. After the completion of the reaction (as monitored by TLC), it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuo. The crude product was chromatographed and isolated in 78% yield (90:10, petroleum ether: ethyl acetate). The crude product was recrystallized in ethanol.

Refinement top

The imine H atom was located in a difference map and refined freely. The remaining H atoms were positioned geometrically (C-H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, (1997)); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
4-(2,4-Dichlorophenyl)-2-(1H-indol-3-yl)-6-methoxypyridine-3,5- dicarbonitrile top
Crystal data top
C22H12Cl2N4OZ = 2
Mr = 419.26F(000) = 428
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5394 (2) ÅCell parameters from 2563 reflections
b = 10.0358 (2) Åθ = 2.2–25.0°
c = 11.1739 (3) ŵ = 0.35 mm1
α = 111.994 (1)°T = 298 K
β = 97.303 (1)°Block, yellow
γ = 93.715 (1)°0.58 × 0.40 × 0.28 mm
V = 976.46 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3401 independent reflections
Radiation source: fine-focus sealed tube3019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.821, Tmax = 0.907k = 1110
10781 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.3783P]
where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max = 0.005
267 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C22H12Cl2N4Oγ = 93.715 (1)°
Mr = 419.26V = 976.46 (4) Å3
Triclinic, P1Z = 2
a = 9.5394 (2) ÅMo Kα radiation
b = 10.0358 (2) ŵ = 0.35 mm1
c = 11.1739 (3) ÅT = 298 K
α = 111.994 (1)°0.58 × 0.40 × 0.28 mm
β = 97.303 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3401 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3019 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.907Rint = 0.019
10781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
3401 reflectionsΔρmin = 0.37 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20213 (5)0.05813 (6)0.06721 (6)0.06710 (19)
Cl20.18710 (5)0.43669 (6)0.01921 (5)0.05569 (16)
O10.71041 (12)0.47517 (13)0.22771 (11)0.0440 (3)
N10.60609 (13)0.63393 (14)0.38834 (12)0.0322 (3)
C20.49048 (16)0.66990 (16)0.44682 (14)0.0294 (3)
C30.36036 (15)0.57682 (16)0.39683 (14)0.0293 (3)
C40.34811 (16)0.45252 (16)0.28224 (14)0.0294 (3)
C50.46814 (16)0.42069 (17)0.22319 (15)0.0332 (4)
C60.59570 (16)0.51473 (17)0.28335 (15)0.0327 (3)
C70.51214 (16)0.80627 (17)0.55884 (15)0.0322 (3)
C80.62593 (17)0.92294 (16)0.58897 (15)0.0332 (3)
C90.73824 (19)0.94826 (18)0.52844 (17)0.0417 (4)
H90.75190.88010.44860.050*
C100.8286 (2)1.0759 (2)0.5888 (2)0.0505 (5)
H100.90421.09270.54930.061*
C110.8089 (2)1.18028 (19)0.7078 (2)0.0516 (5)
H110.87191.26510.74640.062*
C120.6985 (2)1.16004 (19)0.76875 (18)0.0474 (4)
H120.68431.23000.84740.057*
C130.60840 (18)1.03058 (18)0.70822 (16)0.0380 (4)
N140.49146 (17)0.98300 (16)0.74801 (15)0.0456 (4)
H140.462 (2)1.023 (2)0.818 (2)0.057 (6)*
C150.43425 (18)0.85081 (18)0.66041 (16)0.0399 (4)
H150.35440.79740.66710.048*
C160.23671 (17)0.61040 (17)0.45772 (15)0.0349 (4)
N170.13813 (16)0.63647 (17)0.50645 (16)0.0519 (4)
C180.21094 (15)0.35534 (16)0.22670 (14)0.0302 (3)
C190.15904 (18)0.27834 (18)0.29551 (16)0.0380 (4)
H190.21000.28920.37590.046*
C200.03299 (19)0.18576 (19)0.24684 (18)0.0441 (4)
H200.00020.13350.29320.053*
C210.04298 (17)0.17221 (18)0.12898 (18)0.0427 (4)
C220.00404 (17)0.24803 (19)0.05835 (17)0.0425 (4)
H220.04850.23830.02110.051*
C230.13088 (17)0.33881 (17)0.10799 (15)0.0353 (4)
C240.46601 (17)0.29503 (19)0.10682 (16)0.0404 (4)
N250.46376 (18)0.19450 (19)0.01436 (16)0.0597 (5)
C260.84527 (18)0.5613 (2)0.29323 (18)0.0490 (5)
H26A0.84350.65640.29200.073*
H26B0.92010.51620.24910.073*
H26C0.86190.56870.38220.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0368 (3)0.0635 (3)0.0759 (4)0.0164 (2)0.0051 (2)0.0037 (3)
Cl20.0581 (3)0.0665 (3)0.0449 (3)0.0046 (2)0.0027 (2)0.0297 (2)
O10.0292 (6)0.0475 (7)0.0372 (6)0.0012 (5)0.0101 (5)0.0049 (5)
N10.0281 (7)0.0327 (7)0.0266 (7)0.0013 (5)0.0038 (5)0.0017 (5)
C20.0310 (8)0.0295 (7)0.0237 (7)0.0045 (6)0.0040 (6)0.0058 (6)
C30.0292 (8)0.0296 (8)0.0248 (7)0.0043 (6)0.0047 (6)0.0053 (6)
C40.0286 (8)0.0301 (8)0.0251 (7)0.0030 (6)0.0010 (6)0.0069 (6)
C50.0318 (8)0.0322 (8)0.0261 (8)0.0027 (6)0.0044 (6)0.0008 (6)
C60.0292 (8)0.0354 (8)0.0272 (8)0.0033 (6)0.0059 (6)0.0049 (6)
C70.0315 (8)0.0308 (8)0.0264 (8)0.0031 (6)0.0025 (6)0.0031 (6)
C80.0358 (8)0.0287 (8)0.0286 (8)0.0041 (6)0.0000 (6)0.0056 (6)
C90.0469 (10)0.0356 (9)0.0391 (9)0.0028 (7)0.0097 (8)0.0099 (7)
C100.0497 (11)0.0440 (10)0.0567 (12)0.0032 (8)0.0108 (9)0.0190 (9)
C110.0547 (11)0.0342 (9)0.0547 (12)0.0084 (8)0.0026 (9)0.0104 (8)
C120.0556 (11)0.0327 (9)0.0384 (10)0.0009 (8)0.0011 (8)0.0002 (7)
C130.0412 (9)0.0329 (8)0.0309 (8)0.0031 (7)0.0012 (7)0.0040 (7)
N140.0491 (9)0.0395 (8)0.0308 (8)0.0010 (7)0.0124 (7)0.0071 (6)
C150.0384 (9)0.0378 (9)0.0308 (8)0.0009 (7)0.0071 (7)0.0006 (7)
C160.0324 (8)0.0324 (8)0.0305 (8)0.0003 (6)0.0045 (7)0.0027 (6)
N170.0397 (8)0.0519 (9)0.0508 (9)0.0006 (7)0.0172 (7)0.0026 (7)
C180.0278 (8)0.0282 (7)0.0275 (8)0.0042 (6)0.0051 (6)0.0026 (6)
C190.0364 (9)0.0393 (9)0.0333 (9)0.0022 (7)0.0036 (7)0.0097 (7)
C200.0415 (9)0.0404 (9)0.0474 (10)0.0012 (7)0.0133 (8)0.0126 (8)
C210.0287 (8)0.0380 (9)0.0464 (10)0.0009 (7)0.0060 (7)0.0001 (7)
C220.0326 (9)0.0467 (10)0.0352 (9)0.0020 (7)0.0033 (7)0.0045 (8)
C230.0339 (8)0.0361 (8)0.0297 (8)0.0039 (6)0.0029 (6)0.0067 (7)
C240.0306 (8)0.0408 (9)0.0350 (9)0.0004 (7)0.0067 (7)0.0017 (8)
N250.0475 (9)0.0546 (10)0.0464 (10)0.0016 (7)0.0124 (7)0.0152 (8)
C260.0291 (9)0.0586 (11)0.0441 (10)0.0027 (8)0.0088 (7)0.0032 (8)
Geometric parameters (Å, º) top
Cl1—C211.7345 (16)C11—C121.369 (3)
Cl2—C231.7418 (17)C11—H110.93
O1—C61.3363 (19)C12—C131.390 (2)
O1—C261.443 (2)C12—H120.93
N1—C61.3119 (19)C13—N141.373 (2)
N1—C21.3533 (19)N14—C151.347 (2)
C2—C31.417 (2)N14—H140.83 (2)
C2—C71.448 (2)C15—H150.93
C3—C41.399 (2)C16—N171.142 (2)
C3—C161.432 (2)C18—C191.388 (2)
C4—C51.389 (2)C18—C231.390 (2)
C4—C181.491 (2)C19—C201.384 (2)
C5—C61.411 (2)C19—H190.93
C5—C241.429 (2)C20—C211.374 (3)
C7—C151.385 (2)C20—H200.93
C7—C81.452 (2)C21—C221.378 (3)
C8—C91.396 (2)C22—C231.382 (2)
C8—C131.404 (2)C22—H220.93
C9—C101.378 (2)C24—N251.139 (2)
C9—H90.93C26—H26A0.96
C10—C111.395 (3)C26—H26B0.96
C10—H100.93C26—H26C0.96
C6—O1—C26117.54 (12)N14—C13—C12129.16 (16)
C6—N1—C2119.61 (13)N14—C13—C8107.90 (14)
N1—C2—C3119.97 (13)C12—C13—C8122.94 (16)
N1—C2—C7115.10 (13)C15—N14—C13109.99 (14)
C3—C2—C7124.94 (13)C15—N14—H14122.7 (15)
C4—C3—C2120.27 (13)C13—N14—H14127.0 (15)
C4—C3—C16118.28 (13)N14—C15—C7109.82 (15)
C2—C3—C16121.39 (13)N14—C15—H15125.1
C5—C4—C3118.09 (14)C7—C15—H15125.1
C5—C4—C18120.99 (13)N17—C16—C3179.60 (19)
C3—C4—C18120.91 (13)C19—C18—C23117.88 (14)
C4—C5—C6118.03 (13)C19—C18—C4119.46 (14)
C4—C5—C24121.96 (14)C23—C18—C4122.65 (14)
C6—C5—C24119.99 (14)C20—C19—C18121.33 (16)
N1—C6—O1120.15 (13)C20—C19—H19119.3
N1—C6—C5123.88 (14)C18—C19—H19119.3
O1—C6—C5115.97 (13)C21—C20—C19119.01 (17)
C15—C7—C2128.05 (15)C21—C20—H20120.5
C15—C7—C8106.02 (13)C19—C20—H20120.5
C2—C7—C8125.90 (14)C20—C21—C22121.45 (15)
C9—C8—C13118.23 (15)C20—C21—Cl1119.68 (15)
C9—C8—C7135.50 (14)C22—C21—Cl1118.87 (14)
C13—C8—C7106.27 (14)C21—C22—C23118.65 (16)
C10—C9—C8118.98 (16)C21—C22—H22120.7
C10—C9—H9120.5C23—C22—H22120.7
C8—C9—H9120.5C22—C23—C18121.66 (16)
C9—C10—C11121.41 (18)C22—C23—Cl2118.11 (13)
C9—C10—H10119.3C18—C23—Cl2120.21 (12)
C11—C10—H10119.3N25—C24—C5179.6 (2)
C12—C11—C10121.15 (17)O1—C26—H26A109.5
C12—C11—H11119.4O1—C26—H26B109.5
C10—C11—H11119.4H26A—C26—H26B109.5
C11—C12—C13117.28 (16)O1—C26—H26C109.5
C11—C12—H12121.4H26A—C26—H26C109.5
C13—C12—H12121.4H26B—C26—H26C109.5
C6—N1—C2—C31.9 (2)C8—C9—C10—C110.8 (3)
C6—N1—C2—C7177.70 (14)C9—C10—C11—C120.3 (3)
N1—C2—C3—C44.2 (2)C10—C11—C12—C130.9 (3)
C7—C2—C3—C4175.33 (14)C11—C12—C13—N14179.70 (19)
N1—C2—C3—C16178.90 (14)C11—C12—C13—C80.5 (3)
C7—C2—C3—C161.6 (2)C9—C8—C13—N14179.26 (15)
C2—C3—C4—C52.7 (2)C7—C8—C13—N140.18 (19)
C16—C3—C4—C5179.73 (15)C9—C8—C13—C120.6 (3)
C2—C3—C4—C18178.57 (14)C7—C8—C13—C12179.97 (16)
C16—C3—C4—C181.6 (2)C12—C13—N14—C15179.98 (19)
C3—C4—C5—C60.8 (2)C8—C13—N14—C150.1 (2)
C18—C4—C5—C6177.91 (14)C13—N14—C15—C70.0 (2)
C3—C4—C5—C24179.19 (15)C2—C7—C15—N14177.82 (16)
C18—C4—C5—C240.5 (2)C8—C7—C15—N140.1 (2)
C2—N1—C6—O1177.39 (14)C5—C4—C18—C19112.23 (18)
C2—N1—C6—C51.9 (2)C3—C4—C18—C1966.4 (2)
C26—O1—C6—N14.9 (2)C5—C4—C18—C2368.3 (2)
C26—O1—C6—C5174.42 (16)C3—C4—C18—C23113.05 (17)
C4—C5—C6—N13.3 (3)C23—C18—C19—C201.2 (2)
C24—C5—C6—N1178.32 (16)C4—C18—C19—C20179.29 (15)
C4—C5—C6—O1176.04 (15)C18—C19—C20—C211.1 (3)
C24—C5—C6—O12.4 (2)C19—C20—C21—C220.3 (3)
N1—C2—C7—C15158.09 (17)C19—C20—C21—Cl1179.34 (13)
C3—C2—C7—C1522.4 (3)C20—C21—C22—C230.3 (3)
N1—C2—C7—C819.4 (2)Cl1—C21—C22—C23179.99 (12)
C3—C2—C7—C8160.10 (15)C21—C22—C23—C180.2 (2)
C15—C7—C8—C9179.15 (19)C21—C22—C23—Cl2178.73 (13)
C2—C7—C8—C92.9 (3)C19—C18—C23—C220.5 (2)
C15—C7—C8—C130.16 (18)C4—C18—C23—C22179.96 (14)
C2—C7—C8—C13177.80 (15)C19—C18—C23—Cl2177.97 (12)
C13—C8—C9—C101.2 (3)C4—C18—C23—Cl21.5 (2)
C7—C8—C9—C10179.58 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N10.932.563.045 (2)113
C15—H15···N170.932.563.282 (2)135
N14—H14···N25i0.83 (2)2.22 (2)2.996 (2)156 (2)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H12Cl2N4O
Mr419.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.5394 (2), 10.0358 (2), 11.1739 (3)
α, β, γ (°)111.994 (1), 97.303 (1), 93.715 (1)
V3)976.46 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.58 × 0.40 × 0.28
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.821, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
10781, 3401, 3019
Rint0.019
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.05
No. of reflections3401
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.37

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, (1997)), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N10.932.563.045 (2)113
C15—H15···N170.932.563.282 (2)135
N14—H14···N25i0.83 (2)2.22 (2)2.996 (2)156 (2)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

PR thanks V. Ramkumar, Department of Chemistry, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJames, D., Kunz, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agmi, K., Shigmori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds