organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyclo­hexyl­sulfan­yl-2-(4-methyl­phen­yl)-5,7-di­nitro-1H-indole

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 11 August 2008; accepted 28 August 2008; online 6 September 2008)

In the title compound, C21H21N3O4S, the cyclo­hexane ring adopts a chair conformation. The nitro and methyl­phenyl groups are all coplanar with the indole ring system. Intra­molecular N—H⋯O and C—H⋯S hydrogen bonds generate S(6) ring motifs. The mol­ecules form R22(20) centrosymmetric dimers via inter­molecular C—H⋯O hydrogen bonds. A short O⋯O contact [2.842 (2) Å] is observed in the dimer.

Related literature

For related literature, see: Cordell (1981[Cordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.]); Farhanullah et al. (2004[Farhanullah, S. A., Maulik, P. R. & Ji Ram, V. (2004). Tetrahedron Lett. 45, 5099-5102.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O4S

  • Mr = 411.47

  • Triclinic, [P \overline 1]

  • a = 6.1009 (3) Å

  • b = 8.5237 (4) Å

  • c = 19.1522 (10) Å

  • α = 83.551 (3)°

  • β = 84.184 (3)°

  • γ = 81.157 (2)°

  • V = 974.30 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.969

  • 21439 measured reflections

  • 4586 independent reflections

  • 3424 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.170

  • S = 1.05

  • 4586 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.82 (2) 2.30 (2) 2.755 (2) 115 (2)
C19—H19⋯S1 0.93 2.62 3.347 (2) 135
C22—H22⋯O2i 0.93 2.58 3.224 (3) 127
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.])); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Indole, being an integral part of many natural products of therapeutic importance, possesses potentially reactive sites for a variety of chemical reactions to generate molecular diversity (Farhanullah et al., 2004). The spiro-indole ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, e.g. vincrinstine, vinblastine and spirotypostatins (Cordell, 1981). Against this background and to ascertain the detailed information on its molecular conformation, the structure determination of the title compound was carried out.

The indole ring system is planar and the two nitro groups are coplanar with it. The cyclohexane ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.010 (3) Å, q3 = 0.574 (3) Å and ϕ = 51 (18)°. The methylphenyl group is also coplanar with the indole ring system [dihedral angle 1.98 (9)°]. Each of the intramolecular N1—H1···O1 and C19—H19···S1 hydrogen bonds generates an S(6) ring motif (Bernstein et al. 1995).

In the crystal structure, molecules at (x, y, z) and (-x, 1-y, -z) are linked into a centrosymmetric R22(20) dimer by C22—H22···O2 hydrogen bonds. Within the dimer, a short O1···O1 contact [2.842 (2) Å] is observed.

Related literature top

For related literature, see: Cordell (1981); Farhanullah et al. (2004). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 2-(cyclohexylsulfanyl)-1-(4-methylphenyl)-1-ethanone- N-(2,4-dinitrophenyl)hydrazone (0.001 mol) in dimethylforamide (5 ml) was allowed to cool in an ice bath with stirring. To this stirred solution, phosphorus oxychloride (0.008 mol) was added dropwise and the mixture was subjected to microwave irritation for 30–60 sec under 40% power with a pulse rate of 15 s. The reaction was monitored by TLC and after completion of the reaction, the reaction mixture was poured onto the crushed ice. The solid was filtered and washed with plenty of water. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. The title compound was recrystallized in dichloromethane in 10% yield.

Refinement top

The N-bound H atom was located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, (1997)); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atomic numbering and 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
3-(Cyclohexylsulfanyl)-2-(4-methylphenyl)-5,7-dinitro-1H-indole top
Crystal data top
C21H21N3O4SZ = 2
Mr = 411.47F(000) = 432
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.1009 (3) ÅCell parameters from 4582 reflections
b = 8.5237 (4) Åθ = 1.1–27.9°
c = 19.1522 (10) ŵ = 0.20 mm1
α = 83.551 (3)°T = 293 K
β = 84.184 (3)°Block, colourless
γ = 81.157 (2)°0.30 × 0.20 × 0.16 mm
V = 974.30 (8) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4586 independent reflections
Radiation source: fine-focus sealed tube3424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and ϕ scansθmax = 27.9°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 78
Tmin = 0.953, Tmax = 0.969k = 1111
21439 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0969P)2 + 0.289P]
where P = (Fo2 + 2Fc2)/3
4586 reflections(Δ/σ)max = 0.043
267 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C21H21N3O4Sγ = 81.157 (2)°
Mr = 411.47V = 974.30 (8) Å3
Triclinic, P1Z = 2
a = 6.1009 (3) ÅMo Kα radiation
b = 8.5237 (4) ŵ = 0.20 mm1
c = 19.1522 (10) ÅT = 293 K
α = 83.551 (3)°0.30 × 0.20 × 0.16 mm
β = 84.184 (3)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4586 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3424 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.969Rint = 0.036
21439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.54 e Å3
4586 reflectionsΔρmin = 0.31 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37693 (9)0.57116 (6)0.32294 (3)0.04681 (19)
O10.1393 (3)0.6217 (2)0.03507 (9)0.0579 (4)
O20.4543 (3)0.7672 (3)0.05530 (10)0.0796 (7)
O30.6221 (3)1.0174 (3)0.26759 (12)0.0825 (6)
O40.3829 (4)0.9921 (3)0.34373 (11)0.0856 (7)
N10.1558 (3)0.5458 (2)0.13764 (10)0.0390 (4)
H10.157 (4)0.513 (3)0.0989 (13)0.038 (6)*
C20.0106 (3)0.6496 (2)0.16537 (10)0.0372 (4)
C30.2102 (3)0.7282 (2)0.14075 (10)0.0394 (4)
C40.3508 (3)0.8295 (2)0.18166 (12)0.0442 (5)
H40.48430.88200.16570.053*
C50.2909 (4)0.8521 (2)0.24679 (11)0.0444 (5)
C60.0973 (4)0.7772 (2)0.27392 (11)0.0444 (5)
H60.06190.79560.31810.053*
C70.0435 (3)0.6731 (2)0.23291 (11)0.0395 (4)
C80.2509 (3)0.5755 (2)0.24487 (11)0.0403 (4)
C90.3180 (3)0.4986 (2)0.18474 (10)0.0383 (4)
N100.2723 (3)0.7050 (2)0.07243 (10)0.0481 (4)
N110.4432 (4)0.9614 (2)0.28929 (11)0.0577 (5)
C120.3142 (3)0.3850 (2)0.37195 (10)0.0419 (4)
H120.40200.29590.34890.050*
C130.0732 (4)0.3632 (3)0.37755 (15)0.0607 (6)
H13A0.02680.35860.33090.073*
H13B0.01750.45310.39810.073*
C140.0406 (5)0.2098 (3)0.42342 (17)0.0743 (8)
H14A0.11610.19820.42830.089*
H14B0.12190.11970.40070.089*
C150.1201 (6)0.2090 (4)0.49543 (16)0.0852 (10)
H15A0.02990.29330.51990.102*
H15B0.10240.10800.52270.102*
C160.3607 (6)0.2331 (4)0.49010 (16)0.0825 (9)
H16A0.45280.14290.47030.099*
H16B0.40520.23900.53680.099*
C170.3957 (5)0.3857 (3)0.44377 (13)0.0603 (6)
H17A0.31610.47680.46620.072*
H17B0.55280.39590.43850.072*
C180.5160 (3)0.3879 (2)0.16483 (11)0.0400 (4)
C190.6844 (4)0.3372 (3)0.20963 (12)0.0499 (5)
H190.67060.37380.25400.060*
C200.8705 (4)0.2343 (3)0.18971 (13)0.0530 (5)
H200.98010.20290.22090.064*
C210.8985 (3)0.1762 (3)0.12438 (13)0.0467 (5)
C220.7331 (4)0.2260 (3)0.07958 (14)0.0560 (6)
H220.74800.18900.03520.067*
C230.5454 (4)0.3299 (3)0.09918 (12)0.0518 (5)
H230.43670.36150.06770.062*
C241.1020 (4)0.0629 (3)0.10306 (16)0.0616 (6)
H24A1.07680.01500.06210.092*
H24B1.13210.01880.14100.092*
H24C1.22690.12020.09240.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0558 (3)0.0444 (3)0.0442 (3)0.0110 (2)0.0198 (2)0.0025 (2)
O10.0530 (9)0.0732 (11)0.0447 (9)0.0112 (8)0.0118 (7)0.0152 (8)
O20.0584 (11)0.1142 (16)0.0618 (11)0.0323 (10)0.0311 (9)0.0277 (11)
O30.0664 (12)0.0930 (15)0.0803 (14)0.0314 (11)0.0120 (10)0.0287 (11)
O40.1046 (16)0.0878 (14)0.0585 (12)0.0318 (12)0.0201 (11)0.0321 (11)
N10.0373 (8)0.0439 (9)0.0351 (9)0.0011 (7)0.0091 (7)0.0024 (7)
C20.0382 (9)0.0360 (9)0.0368 (10)0.0057 (7)0.0047 (7)0.0006 (7)
C30.0396 (10)0.0408 (10)0.0368 (10)0.0033 (8)0.0070 (8)0.0009 (8)
C40.0414 (10)0.0416 (10)0.0474 (12)0.0011 (8)0.0062 (8)0.0013 (9)
C50.0493 (11)0.0386 (10)0.0427 (11)0.0002 (8)0.0021 (9)0.0028 (8)
C60.0542 (12)0.0401 (10)0.0388 (11)0.0042 (9)0.0080 (9)0.0026 (8)
C70.0435 (10)0.0369 (10)0.0385 (10)0.0079 (8)0.0080 (8)0.0020 (8)
C80.0425 (10)0.0386 (10)0.0406 (11)0.0074 (8)0.0103 (8)0.0012 (8)
C90.0364 (9)0.0395 (10)0.0394 (10)0.0065 (7)0.0103 (7)0.0017 (8)
N100.0442 (9)0.0563 (11)0.0421 (10)0.0028 (8)0.0110 (7)0.0045 (8)
N110.0683 (13)0.0500 (11)0.0498 (12)0.0095 (9)0.0056 (9)0.0080 (9)
C120.0511 (11)0.0393 (10)0.0353 (10)0.0009 (8)0.0099 (8)0.0050 (8)
C130.0592 (14)0.0618 (15)0.0637 (16)0.0165 (12)0.0139 (11)0.0015 (12)
C140.0739 (18)0.0625 (16)0.086 (2)0.0213 (14)0.0013 (15)0.0030 (15)
C150.123 (3)0.0659 (18)0.0593 (18)0.0139 (18)0.0167 (18)0.0067 (14)
C160.117 (3)0.0775 (19)0.0515 (16)0.0137 (18)0.0255 (16)0.0155 (14)
C170.0774 (17)0.0627 (14)0.0435 (13)0.0102 (12)0.0243 (11)0.0011 (11)
C180.0365 (9)0.0397 (10)0.0435 (11)0.0053 (8)0.0088 (8)0.0022 (8)
C190.0439 (11)0.0604 (13)0.0445 (12)0.0005 (10)0.0111 (9)0.0040 (10)
C200.0392 (11)0.0626 (14)0.0554 (13)0.0009 (9)0.0161 (9)0.0039 (11)
C210.0387 (10)0.0424 (11)0.0575 (13)0.0035 (8)0.0095 (9)0.0031 (9)
C220.0504 (12)0.0610 (14)0.0555 (14)0.0068 (10)0.0132 (10)0.0142 (11)
C230.0463 (11)0.0566 (13)0.0514 (13)0.0081 (9)0.0184 (9)0.0093 (10)
C240.0446 (12)0.0570 (14)0.0777 (18)0.0057 (10)0.0055 (11)0.0003 (12)
Geometric parameters (Å, º) top
S1—C81.744 (2)C13—H13B0.97
S1—C121.823 (2)C14—C151.507 (4)
O1—N101.223 (2)C14—H14A0.97
O2—N101.215 (2)C14—H14B0.97
O3—N111.216 (3)C15—C161.505 (5)
O4—N111.208 (3)C15—H15A0.97
N1—C21.347 (2)C15—H15B0.97
N1—C91.390 (2)C16—C171.521 (4)
N1—H10.82 (2)C16—H16A0.97
C2—C31.396 (3)C16—H16B0.97
C2—C71.409 (3)C17—H17A0.97
C3—C41.373 (3)C17—H17B0.97
C3—N101.441 (3)C18—C231.387 (3)
C4—C51.377 (3)C18—C191.392 (3)
C4—H40.93C19—C201.373 (3)
C5—C61.375 (3)C19—H190.93
C5—N111.464 (3)C20—C211.382 (4)
C6—C71.388 (3)C20—H200.93
C6—H60.93C21—C221.377 (3)
C7—C81.427 (3)C21—C241.502 (3)
C8—C91.384 (3)C22—C231.383 (3)
C9—C181.460 (3)C22—H220.93
C12—C131.502 (3)C23—H230.93
C12—C171.510 (3)C24—H24A0.96
C12—H120.98C24—H24B0.96
C13—C141.519 (4)C24—H24C0.96
C13—H13A0.97
C8—S1—C12103.22 (9)C15—C14—H14A109.3
C2—N1—C9110.57 (17)C13—C14—H14A109.3
C2—N1—H1124.1 (16)C15—C14—H14B109.3
C9—N1—H1125.3 (16)C13—C14—H14B109.3
N1—C2—C3133.05 (19)H14A—C14—H14B108.0
N1—C2—C7107.39 (17)C16—C15—C14111.1 (2)
C3—C2—C7119.55 (18)C16—C15—H15A109.4
C4—C3—C2120.10 (19)C14—C15—H15A109.4
C4—C3—N10118.89 (18)C16—C15—H15B109.4
C2—C3—N10121.01 (18)C14—C15—H15B109.4
C3—C4—C5118.86 (19)H15A—C15—H15B108.0
C3—C4—H4120.6C15—C16—C17110.5 (2)
C5—C4—H4120.6C15—C16—H16A109.5
C6—C5—C4123.55 (19)C17—C16—H16A109.5
C6—C5—N11118.6 (2)C15—C16—H16B109.5
C4—C5—N11117.81 (19)C17—C16—H16B109.5
C5—C6—C7117.57 (19)H16A—C16—H16B108.1
C5—C6—H6121.2C12—C17—C16111.0 (2)
C7—C6—H6121.2C12—C17—H17A109.4
C6—C7—C2120.35 (18)C16—C17—H17A109.4
C6—C7—C8132.23 (19)C12—C17—H17B109.4
C2—C7—C8107.42 (17)C16—C17—H17B109.4
C9—C8—C7106.84 (17)H17A—C17—H17B108.0
C9—C8—S1131.38 (15)C23—C18—C19116.87 (19)
C7—C8—S1121.76 (16)C23—C18—C9120.83 (18)
C8—C9—N1107.76 (17)C19—C18—C9122.3 (2)
C8—C9—C18132.49 (18)C20—C19—C18121.5 (2)
N1—C9—C18119.74 (18)C20—C19—H19119.3
O2—N10—O1123.43 (19)C18—C19—H19119.3
O2—N10—C3118.61 (18)C19—C20—C21121.4 (2)
O1—N10—C3117.96 (17)C19—C20—H20119.3
O4—N11—O3123.6 (2)C21—C20—H20119.3
O4—N11—C5118.0 (2)C22—C21—C20117.5 (2)
O3—N11—C5118.3 (2)C22—C21—C24121.3 (2)
C13—C12—C17111.4 (2)C20—C21—C24121.2 (2)
C13—C12—S1114.70 (15)C21—C22—C23121.4 (2)
C17—C12—S1105.15 (15)C21—C22—H22119.3
C13—C12—H12108.5C23—C22—H22119.3
C17—C12—H12108.5C22—C23—C18121.3 (2)
S1—C12—H12108.5C22—C23—H23119.3
C12—C13—C14109.6 (2)C18—C23—H23119.3
C12—C13—H13A109.8C21—C24—H24A109.5
C14—C13—H13A109.8C21—C24—H24B109.5
C12—C13—H13B109.8H24A—C24—H24B109.5
C14—C13—H13B109.8C21—C24—H24C109.5
H13A—C13—H13B108.2H24A—C24—H24C109.5
C15—C14—C13111.5 (2)H24B—C24—H24C109.5
C9—N1—C2—C3178.5 (2)C2—C3—N10—O2175.0 (2)
C9—N1—C2—C70.4 (2)C4—C3—N10—O1175.8 (2)
N1—C2—C3—C4179.9 (2)C2—C3—N10—O14.1 (3)
C7—C2—C3—C41.1 (3)C4—C3—N10—O1175.8 (2)
N1—C2—C3—N100.2 (3)C2—C3—N10—O14.1 (3)
C7—C2—C3—N10179.03 (18)C6—C5—N11—O46.6 (3)
C2—C3—C4—C50.2 (3)C4—C5—N11—O4173.8 (2)
N10—C3—C4—C5179.71 (19)C6—C5—N11—O3174.2 (2)
C3—C4—C5—C60.6 (3)C4—C5—N11—O35.4 (3)
C3—C4—C5—N11179.72 (19)C8—S1—C12—C1350.48 (19)
C4—C5—C6—C70.2 (3)C8—S1—C12—C17173.23 (16)
N11—C5—C6—C7179.44 (19)C17—C12—C13—C1457.0 (3)
C5—C6—C7—C21.5 (3)S1—C12—C13—C14176.27 (18)
C5—C6—C7—C8178.8 (2)C12—C13—C14—C1556.9 (3)
N1—C2—C7—C6178.97 (18)C13—C14—C15—C1656.9 (3)
C3—C2—C7—C61.9 (3)C14—C15—C16—C1755.5 (4)
N1—C2—C7—C80.8 (2)C13—C12—C17—C1657.0 (3)
C3—C2—C7—C8178.26 (17)S1—C12—C17—C16178.1 (2)
C6—C7—C8—C9178.8 (2)C15—C16—C17—C1255.6 (3)
C2—C7—C8—C91.0 (2)C8—C9—C18—C23178.5 (2)
C6—C7—C8—S10.1 (3)N1—C9—C18—C230.5 (3)
C2—C7—C8—S1179.67 (14)C8—C9—C18—C190.7 (4)
C12—S1—C8—C979.3 (2)N1—C9—C18—C19179.66 (19)
C12—S1—C8—C7102.35 (17)C23—C18—C19—C200.1 (3)
C7—C8—C9—N10.7 (2)C9—C18—C19—C20179.3 (2)
S1—C8—C9—N1179.26 (15)C18—C19—C20—C210.2 (4)
C7—C8—C9—C18178.3 (2)C19—C20—C21—C220.3 (4)
S1—C8—C9—C180.2 (4)C19—C20—C21—C24179.7 (2)
C2—N1—C9—C80.2 (2)C20—C21—C22—C230.2 (4)
C2—N1—C9—C18178.97 (17)C24—C21—C22—C23179.8 (2)
O1—O1—N10—O20.00 (4)C21—C22—C23—C180.1 (4)
O1—O1—N10—C30.00 (14)C19—C18—C23—C220.2 (3)
C4—C3—N10—O25.1 (3)C9—C18—C23—C22179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.82 (2)2.30 (2)2.755 (2)115 (2)
C19—H19···S10.932.623.347 (2)135
C22—H22···O2i0.932.583.224 (3)127
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H21N3O4S
Mr411.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.1009 (3), 8.5237 (4), 19.1522 (10)
α, β, γ (°)83.551 (3), 84.184 (3), 81.157 (2)
V3)974.30 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.953, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
21439, 4586, 3424
Rint0.036
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.170, 1.05
No. of reflections4586
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, (1997)), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.82 (2)2.30 (2)2.755 (2)115 (2)
C19—H19···S10.932.623.347 (2)135
C22—H22···O2i0.932.583.224 (3)127
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarhanullah, S. A., Maulik, P. R. & Ji Ram, V. (2004). Tetrahedron Lett. 45, 5099–5102.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds