metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1H-Imidazole-κN3){N-[1-(2-oxido­phenyl-κO)ethyl­­idene]-L-phenyl­alaninato-κ2N,O}copper(II)

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: zgq1118@163.com

(Received 19 August 2008; accepted 28 August 2008; online 6 September 2008)

In the title compound, [Cu(C17H15NO3)(C3H4N2)], the CuII atom is four-coordinated by two O atoms and the N atom of the tridentate Schiff base ligand, and one N atom from the imidazole ligand in a distorted square-planar geometry. In the crystal structure, mol­ecules are linked into dimers by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Basu Baul et al. (2007[Basu Baul, T. S., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., Dick, D. V., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849-4862.]); Casella & Guillotti (1983[Casella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259-2266.]); Ganguly et al. (2008[Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027-1050.]); Parekh et al. (2006[Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67-72.]); Plesch et al. (1997[Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433-440.]); Usman et al. (2003[Usman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438-m440.]); Vigato & Tamburini (2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C17H15NO3)(C3H4N2)]

  • Mr = 412.92

  • Orthorhombic, C 2221

  • a = 16.8029 (16) Å

  • b = 19.8231 (19) Å

  • c = 11.3642 (11) Å

  • V = 3785.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 291 (2) K

  • 0.43 × 0.34 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.630, Tmax = 0.759

  • 10101 measured reflections

  • 3534 independent reflections

  • 3008 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.01

  • 3534 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1557 Friedel pairs

  • Flack parameter: −0.029 (12)

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.8876 (19)
Cu1—N1 1.945 (2)
Cu1—O3 1.9511 (18)
Cu1—N2 1.958 (2)
O1—Cu1—N1 93.33 (9)
O1—Cu1—O3 171.74 (9)
N1—Cu1—O3 84.90 (8)
O1—Cu1—N2 93.20 (9)
N1—Cu1—N2 162.84 (10)
O3—Cu1—N2 90.77 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3D⋯O2i 0.86 1.95 2.789 (3) 166
Symmetry code: (i) x, -y+1, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-hydroxyacetophenone and animo acids (Usman et al., 2003; Basu Baul et al., 2007; Parekh et al., 2006). We report here the crystal structure of the title CuII complex.

The structure consists of discrete monomeric square-planar CuIIcomplex (Fig. 1 and Table 1). The four basal positions are occupied by three donor atoms from the tridentate Schiff base ligand, which furnishes an ONO donor set, with the fourth position occupied by one N atom from the imidazole ligand. The nitrogen heterocycle is planar and it forms an angle of 14.7 (2)° with the C1—C6 ring.

The crystal structure is stabilized by N—H···O type hydrogen bonds (Fig. 2 and Table 2). The H atom attached to N3 is hydrogen-bonded to the neighboring carboxylate oxygen O2 to form a dimer.

Related literature top

For related literature, see: Basu Baul et al. (2007); Casella & Guillotti (1983); Ganguly et al. (2008); Parekh et al. (2006); Plesch et al. (1997); Usman et al. (2003); Vigato & Tamburini (2004).

Experimental top

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-phenylalanine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2 h at 333 K. The resultant mixture was added dropwise to copper(II) acetate monohydrate (1.00 mmol) and imidazole (1.00 mmol) in an aqueous methanol solution (20 ml, 1:1 v/v), and heated with stirring for 2 h at 333 K. The dark blue solution was filtered and left for several days; the resulting dark blue crystals were filtered off, washed with water, and dried under vacuum.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) or 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C), C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C), and with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the crystal packing along the c axis. Hydrogen bonds are shown as dashed lines.
(1H-Imidazole-κN3){N-[1-(2-oxidophenyl-κO)ethylidene]-L- phenylalaninato-κ2N,O}copper(II) top
Crystal data top
[Cu(C17H15NO3)(C3H4N2)]F(000) = 1704
Mr = 412.92Dx = 1.449 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 3925 reflections
a = 16.8029 (16) Åθ = 2.4–23.2°
b = 19.8231 (19) ŵ = 1.18 mm1
c = 11.3642 (11) ÅT = 291 K
V = 3785.3 (6) Å3Block, dark blue
Z = 80.43 × 0.34 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3534 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2016
Tmin = 0.630, Tmax = 0.759k = 2423
10101 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0324P)2 + 1.1795P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3534 reflectionsΔρmax = 0.21 e Å3
245 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 1557 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.029 (12)
Crystal data top
[Cu(C17H15NO3)(C3H4N2)]V = 3785.3 (6) Å3
Mr = 412.92Z = 8
Orthorhombic, C2221Mo Kα radiation
a = 16.8029 (16) ŵ = 1.18 mm1
b = 19.8231 (19) ÅT = 291 K
c = 11.3642 (11) Å0.43 × 0.34 × 0.25 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3534 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3008 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.759Rint = 0.027
10101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.21 e Å3
S = 1.01Δρmin = 0.16 e Å3
3534 reflectionsAbsolute structure: Flack (1983), 1557 Friedel pairs
245 parametersAbsolute structure parameter: 0.029 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.10619 (2)0.367615 (16)0.77896 (3)0.04364 (11)
N10.13985 (13)0.27457 (10)0.80032 (19)0.0406 (5)
N20.10665 (16)0.46531 (10)0.75384 (17)0.0459 (5)
N30.13752 (15)0.57138 (11)0.7787 (3)0.0547 (6)
H3D0.15440.60780.81150.066*
O10.05861 (14)0.34996 (10)0.63167 (17)0.0624 (6)
O20.20326 (14)0.32527 (10)1.08596 (17)0.0577 (6)
O30.14173 (11)0.37985 (8)0.94100 (15)0.0470 (5)
C10.04519 (18)0.29043 (15)0.5868 (2)0.0485 (7)
C20.06894 (17)0.22761 (15)0.6360 (2)0.0461 (7)
C30.0429 (2)0.16858 (17)0.5793 (3)0.0615 (9)
H30.05640.12710.61170.074*
C40.0015 (2)0.1697 (2)0.4781 (4)0.0778 (11)
H40.01920.12960.44470.093*
C50.0197 (2)0.2304 (2)0.4260 (3)0.0704 (10)
H50.04750.23120.35530.084*
C60.0028 (2)0.28950 (16)0.4780 (3)0.0585 (8)
H60.00980.33010.44160.070*
C70.11970 (16)0.22199 (12)0.7394 (2)0.0444 (7)
C80.15118 (19)0.15280 (12)0.7715 (3)0.0580 (8)
H8A0.19010.15700.83280.087*
H8B0.17530.13250.70350.087*
H8C0.10810.12500.79840.087*
C90.19625 (17)0.27141 (13)0.8989 (2)0.0454 (7)
H90.18970.22840.94040.054*
C100.17829 (18)0.32911 (13)0.9830 (2)0.0439 (7)
C110.28234 (18)0.27726 (15)0.8539 (3)0.0563 (8)
H11A0.31850.27380.92010.068*
H11B0.29330.23980.80140.068*
C120.29811 (17)0.34248 (14)0.7897 (3)0.0520 (7)
C130.2807 (2)0.34864 (17)0.6704 (3)0.0656 (10)
H130.26060.31170.62960.079*
C140.2928 (3)0.4089 (2)0.6120 (3)0.0845 (12)
H140.28130.41220.53210.101*
C150.3216 (3)0.4640 (2)0.6713 (4)0.0921 (13)
H150.32920.50470.63210.110*
C160.3390 (3)0.45879 (18)0.7879 (5)0.0925 (14)
H160.35890.49600.82810.111*
C170.3274 (2)0.39883 (19)0.8466 (4)0.0814 (11)
H170.33960.39620.92630.098*
C180.13541 (19)0.51078 (14)0.8262 (3)0.0560 (9)
H180.15240.50130.90240.067*
C190.1082 (2)0.56540 (16)0.6691 (3)0.0731 (10)
H190.10250.59980.61400.088*
C200.0885 (2)0.49998 (17)0.6544 (3)0.0708 (11)
H200.06600.48160.58680.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0632 (2)0.03698 (15)0.03072 (15)0.00253 (17)0.00760 (17)0.00122 (14)
N10.0497 (13)0.0383 (11)0.0339 (13)0.0008 (10)0.0026 (10)0.0022 (9)
N20.0637 (15)0.0421 (11)0.0319 (12)0.0013 (11)0.0068 (12)0.0016 (9)
N30.0760 (18)0.0383 (12)0.0498 (14)0.0005 (11)0.0040 (14)0.0027 (12)
O10.0910 (16)0.0539 (14)0.0424 (11)0.0013 (11)0.0241 (11)0.0035 (10)
O20.0849 (16)0.0513 (12)0.0368 (10)0.0122 (11)0.0180 (11)0.0010 (9)
O30.0702 (13)0.0376 (10)0.0333 (10)0.0094 (9)0.0094 (8)0.0010 (8)
C10.0508 (18)0.0605 (19)0.0342 (15)0.0049 (15)0.0044 (13)0.0126 (14)
C20.0489 (18)0.0522 (17)0.0374 (15)0.0067 (14)0.0086 (13)0.0135 (13)
C30.062 (2)0.0598 (19)0.062 (2)0.0079 (16)0.0073 (17)0.0249 (17)
C40.070 (2)0.084 (2)0.080 (3)0.017 (2)0.001 (2)0.039 (2)
C50.057 (2)0.109 (3)0.046 (2)0.010 (2)0.0005 (17)0.030 (2)
C60.0519 (19)0.084 (2)0.0400 (19)0.0024 (19)0.0000 (13)0.0078 (18)
C70.0538 (18)0.0392 (13)0.0400 (16)0.0032 (12)0.0140 (13)0.0051 (11)
C80.078 (2)0.0403 (15)0.0562 (18)0.0001 (13)0.0123 (18)0.0059 (15)
C90.0586 (19)0.0357 (14)0.0419 (15)0.0043 (13)0.0051 (14)0.0034 (12)
C100.0550 (19)0.0377 (15)0.0391 (15)0.0003 (13)0.0068 (14)0.0017 (12)
C110.056 (2)0.0505 (18)0.063 (2)0.0117 (15)0.0050 (16)0.0008 (16)
C120.0463 (18)0.0467 (16)0.063 (2)0.0048 (13)0.0034 (17)0.0049 (16)
C130.082 (3)0.061 (2)0.0542 (19)0.0013 (17)0.0195 (18)0.0042 (16)
C140.115 (3)0.079 (3)0.059 (2)0.003 (2)0.022 (2)0.009 (2)
C150.111 (4)0.065 (3)0.100 (3)0.008 (2)0.013 (3)0.018 (2)
C160.116 (4)0.055 (2)0.107 (4)0.026 (2)0.029 (3)0.010 (2)
C170.087 (3)0.073 (2)0.084 (3)0.011 (2)0.027 (2)0.009 (2)
C180.088 (3)0.0427 (16)0.0375 (16)0.0023 (15)0.0107 (15)0.0019 (13)
C190.108 (3)0.0540 (19)0.057 (2)0.002 (2)0.013 (2)0.0230 (16)
C200.115 (3)0.0569 (19)0.0401 (17)0.004 (2)0.025 (2)0.0128 (15)
Geometric parameters (Å, º) top
Cu1—O11.8876 (19)C7—C81.514 (4)
Cu1—N11.945 (2)C8—H8A0.96
Cu1—O31.9511 (18)C8—H8B0.96
Cu1—N21.958 (2)C8—H8C0.96
N1—C71.296 (3)C9—C101.520 (4)
N1—C91.469 (3)C9—C111.539 (4)
N2—C181.312 (4)C9—H90.98
N2—C201.358 (4)C11—C121.508 (4)
N3—C181.317 (4)C11—H11A0.97
N3—C191.346 (4)C11—H11B0.97
N3—H3D0.86C12—C171.381 (4)
O1—C11.305 (3)C12—C131.392 (4)
O2—C101.246 (3)C13—C141.383 (5)
O3—C101.271 (3)C13—H130.93
C1—C21.422 (4)C14—C151.371 (6)
C1—C61.427 (4)C14—H140.93
C2—C31.405 (4)C15—C161.361 (6)
C2—C71.457 (4)C15—H150.93
C3—C41.371 (5)C16—C171.377 (5)
C3—H30.93C16—H160.93
C4—C51.376 (5)C17—H170.93
C4—H40.93C18—H180.93
C5—C61.365 (4)C19—C201.349 (4)
C5—H50.93C19—H190.93
C6—H60.93C20—H200.93
O1—Cu1—N193.33 (9)H8B—C8—H8C109.5
O1—Cu1—O3171.74 (9)N1—C9—C10108.6 (2)
N1—Cu1—O384.90 (8)N1—C9—C11110.4 (2)
O1—Cu1—N293.20 (9)C10—C9—C11109.8 (2)
N1—Cu1—N2162.84 (10)N1—C9—H9109.3
O3—Cu1—N290.77 (8)C10—C9—H9109.3
C7—N1—C9122.8 (2)C11—C9—H9109.3
C7—N1—Cu1128.33 (19)O2—C10—O3124.3 (3)
C9—N1—Cu1108.86 (16)O2—C10—C9118.5 (2)
C18—N2—C20104.9 (2)O3—C10—C9117.1 (2)
C18—N2—Cu1126.11 (19)C12—C11—C9113.0 (2)
C20—N2—Cu1128.4 (2)C12—C11—H11A109.0
C18—N3—C19106.8 (3)C9—C11—H11A109.0
C18—N3—H3D126.6C12—C11—H11B109.0
C19—N3—H3D126.6C9—C11—H11B109.0
C1—O1—Cu1125.97 (19)H11A—C11—H11B107.8
C10—O3—Cu1113.79 (16)C17—C12—C13117.4 (3)
O1—C1—C2126.1 (3)C17—C12—C11122.0 (3)
O1—C1—C6115.9 (3)C13—C12—C11120.6 (3)
C2—C1—C6118.0 (3)C14—C13—C12120.8 (3)
C3—C2—C1117.5 (3)C14—C13—H13119.6
C3—C2—C7119.2 (3)C12—C13—H13119.6
C1—C2—C7123.3 (2)C15—C14—C13120.2 (4)
C4—C3—C2122.7 (4)C15—C14—H14119.9
C4—C3—H3118.6C13—C14—H14119.9
C2—C3—H3118.6C16—C15—C14119.6 (4)
C3—C4—C5119.7 (3)C16—C15—H15120.2
C3—C4—H4120.1C14—C15—H15120.2
C5—C4—H4120.1C15—C16—C17120.4 (4)
C6—C5—C4120.2 (3)C15—C16—H16119.8
C6—C5—H5119.9C17—C16—H16119.8
C4—C5—H5119.9C16—C17—C12121.5 (4)
C5—C6—C1121.6 (3)C16—C17—H17119.3
C5—C6—H6119.2C12—C17—H17119.3
C1—C6—H6119.2N2—C18—N3112.3 (3)
N1—C7—C2121.5 (2)N2—C18—H18123.9
N1—C7—C8120.6 (3)N3—C18—H18123.9
C2—C7—C8117.9 (2)N3—C19—C20106.8 (3)
C7—C8—H8A109.5N3—C19—H19126.6
C7—C8—H8B109.5C20—C19—H19126.6
H8A—C8—H8B109.5C19—C20—N2109.2 (3)
C7—C8—H8C109.5C19—C20—H20125.4
H8A—C8—H8C109.5N2—C20—H20125.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3D···O2i0.861.952.789 (3)166
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C17H15NO3)(C3H4N2)]
Mr412.92
Crystal system, space groupOrthorhombic, C2221
Temperature (K)291
a, b, c (Å)16.8029 (16), 19.8231 (19), 11.3642 (11)
V3)3785.3 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.43 × 0.34 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.630, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
10101, 3534, 3008
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.01
No. of reflections3534
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16
Absolute structureFlack (1983), 1557 Friedel pairs
Absolute structure parameter0.029 (12)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.8876 (19)Cu1—O31.9511 (18)
Cu1—N11.945 (2)Cu1—N21.958 (2)
O1—Cu1—N193.33 (9)O1—Cu1—N293.20 (9)
O1—Cu1—O3171.74 (9)N1—Cu1—N2162.84 (10)
N1—Cu1—O384.90 (8)O3—Cu1—N290.77 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3D···O2i0.861.952.789 (3)166
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

This research was supported by the National Science Foundation of China (grant No. 20676057).

References

First citationBasu Baul, T. S., Masharing, C., Ruisi, G., Jirásko, R., Holčapek, M., Dick, D. V., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259–2266.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGanguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.  Web of Science CrossRef CAS Google Scholar
First citationParekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67–72.  Web of Science CrossRef Google Scholar
First citationPlesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433–440.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Fun, H.-K., Basu Baul, T. S. & Paul, P. C. (2003). Acta Cryst. E59, m438–m440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds