organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1878-o1879

4-Amino­pyridinium 4-nitro­benzoate 4-nitro­benzoic acid

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 29 August 2008; accepted 29 August 2008; online 6 September 2008)

The asymmetric unit of the title compound, C5H7N2+·C7H4NO4·C7H5NO4, consists of an amino­pyridinium cation, a 4-nitro­benzoate anion and a neutral 4-nitro­benzoic acid mol­ecule. The pyridine ring forms dihedral angles of 64.70 (5)° and 70.37 (5)°, respectively, with the benzene rings of 4-nitro­benzoic acid and 4-nitro­benzoate. In the crystal structure, the cations, anions and the neutral 4-nitro­benzoic acid mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001). Adjacent networks are cross-linked via C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distances 3.6339 (6) and 3.6566 (6) Å].

Related literature

For the biological activity of 4-amino­pyridine, see: Judge et al. (2006[Judge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224-259.]); Schwid et al. (1997[Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817-821.]); Strupp et al. (2004[Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623-1625.]). For related structures, see: Chao & Schempp (1977[Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557-1564.]); Anderson et al. (2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]); Andrau & White, (2003[Andrau, L. & White, J. (2003). Acta Cryst. E59, o77-o79.]); Bhattacharya et al. (1994[Bhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater. 6, 531-537.]); Karle et al. (2003[Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727-749.]).

[Scheme 1]

Experimental

Crystal data
  • C5H7N2+·C7H4NO4·C7H5NO4

  • Mr = 428.36

  • Triclinic, [P \overline 1]

  • a = 6.4561 (1) Å

  • b = 6.8598 (1) Å

  • c = 20.9055 (3) Å

  • α = 85.826 (1)°

  • β = 87.975 (1)°

  • γ = 86.188 (1)°

  • V = 920.92 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100.0 (1) K

  • 0.40 × 0.36 × 0.29 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.965

  • 24945 measured reflections

  • 6647 independent reflections

  • 5169 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 1.05

  • 6647 reflections

  • 284 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H1O3⋯O3Bi 0.82 1.63 2.4457 (11) 170
N3—H3A⋯O3Bii 0.86 2.14 2.9977 (12) 172
N3—H3B⋯O4Bi 0.86 2.07 2.8758 (12) 155
N2—H1N2⋯O4Aiii 0.85 (1) 1.99 (1) 2.7726 (12) 153 (1)
C2B—H2BA⋯O1Biv 0.93 2.52 3.2187 (13) 133
C8—H8A⋯O3Av 0.93 2.56 3.4565 (13) 161
C12—H12A⋯O1Avi 0.93 2.55 3.4427 (13) 162
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+1; (iii) x+1, y-1, z; (iv) -x+3, -y+1, -z+2; (v) x, y-1, z; (vi) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

4-Aminopyridine (Fampridine) is used clinically in Lambert-Eaton myasthenic syndrome and multiple sclerosis because by blocking potassium channels, it prolongs the action potentials thereby increasing transmitter release at the neuromuscular junction (Judge et al., 2006; Schwid et al., 1997; Strupp et al., 2004). The crystal structure of 4-aminopyridine has been reported (Chao & Schempp, 1977; Anderson et al., 2005). As an extension of our systematic study of hydrogen bonding patterns of 4-aminopyridine with aromatic carboxylic acids, we report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains one 4-aminopyridinium cation, one 4-nitrobenzoate anion and one 4-nitrobenzoic acid molecule. A proton transfer from the carboxyl group of 4-nitrobenzoic acid to atom N2 of 4-aminopyridine resulted in the formation of ions. This lead to the widening of C8—N2—C12 angle of the pyridine ring to 120.86 (9)°, compared to 115.25 (13)° in the unprotonated 4-aminopyridine (Anderson et al., 2005). This type of protonation is observed in various 4-aminopyridine acid complexes (Bhattacharya et al., 1994; Karle et al., 2003). The bond lengths and angles of the 4-aminopyridne are comparable to the values reported earlier for 4-aminopyridine (Chao & Schempp, 1977; Anderson et al., 2005). The bond lengths and angles of the 4-nitrobenzoic acid is found to be normal(Andrau & White, 2003).

The dihedral angle between the benzene rings of 4-nitrobenzoic acid (C1A-C6A) and 4-nitrobenzoate (C1B-C6B) units is 6.62 (5)°. The pyridine (N2/C8—C12) ring forms dihedral angles of 64.70 (5)° and 70.37 (5)°, respectively, with the C1A-C6A and C1B-C6B rings.

In the crystal structure, the cations, anions and the neutral 4-nitrobenzoic acid molecules are linked to form a two-dimensional network (Fig. 2) parallel to the (0 0 1) by O—H···O and N—H···O hydrogen bonds (Table 1). The adjacent networks are cross-linked via C—H···O hydrogen bonds. The crystal packing is further consolidated by ππ stacking interactions between symmetry-related C1A-C6A (centroid Cg1) and C1B-C6B (centroid Cg2) rings, with Cg1···Cg1i and Cg2···Cg2vii distances of 3.6566 (6) Å and 3.6339 (6) Å, respectively [symmetry codes: (i) 1-x, 2-y, 1-z; (vii) 2-x, 2-y, 2-z].

Related literature top

For the biological activity of 4-aminopyridine, see: Judge et al. (2006); Schwid et al. (1997); Strupp et al. (2004). For related structures, see: Chao & Schempp (1977); Anderson et al. (2005); Andrau & White, (2003); Bhattacharya et al. (1994); Karle et al. (2003).

Experimental top

4-Aminopyridine and 4-nitrobenzoic acid were mixed in equimolar ratio in methanol and warmed in a water bath for 2 h. Colourless single crystals were obtained after a week on slow evaporation.

Refinement top

Atom H1N2 was located from a difference map and was refined with the N-H distance restrained to 0.85 (1) Å. The remaining H atoms were positioned geometrically with C-H = 0.93 Å, N-H = 0.86 Å and O-H = 0.82Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C5H7N2+·C7H4NO4·C7H5NO4Z = 2
Mr = 428.36F(000) = 444
Triclinic, P1Dx = 1.545 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4561 (1) ÅCell parameters from 6200 reflections
b = 6.8598 (1) Åθ = 2.2–29.2°
c = 20.9055 (3) ŵ = 0.12 mm1
α = 85.826 (1)°T = 100 K
β = 87.975 (1)°Block, colourless
γ = 86.188 (1)°0.40 × 0.36 × 0.29 mm
V = 920.92 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6647 independent reflections
Radiation source: fine-focus sealed tube5169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 32.5°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.952, Tmax = 0.965k = 1010
24945 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.1221P]
where P = (Fo2 + 2Fc2)/3
6647 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
C5H7N2+·C7H4NO4·C7H5NO4γ = 86.188 (1)°
Mr = 428.36V = 920.92 (2) Å3
Triclinic, P1Z = 2
a = 6.4561 (1) ÅMo Kα radiation
b = 6.8598 (1) ŵ = 0.12 mm1
c = 20.9055 (3) ÅT = 100 K
α = 85.826 (1)°0.40 × 0.36 × 0.29 mm
β = 87.975 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6647 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5169 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.965Rint = 0.031
24945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.43 e Å3
6647 reflectionsΔρmin = 0.39 e Å3
284 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.61416 (13)0.64153 (13)0.61139 (4)0.02534 (18)
O1B1.43798 (12)0.64460 (14)1.07244 (4)0.02613 (19)
O2A0.89023 (12)0.63198 (13)0.54960 (4)0.02492 (18)
O2B1.15700 (13)0.66730 (15)1.13139 (4)0.02794 (19)
O3A0.31404 (11)0.97209 (12)0.29069 (4)0.02024 (16)
H1O30.23421.01630.26280.030*
O3B0.89111 (11)0.90736 (11)0.80183 (4)0.01831 (15)
O4A0.02402 (11)0.98398 (11)0.35318 (4)0.01950 (16)
O4B0.59084 (12)0.90329 (13)0.85892 (4)0.02425 (18)
N1A0.70215 (13)0.66162 (13)0.55851 (4)0.01667 (17)
N1B1.24848 (13)0.67136 (13)1.07904 (4)0.01646 (17)
N20.80980 (14)0.30341 (13)0.29153 (4)0.01904 (18)
N30.73597 (13)0.85350 (13)0.20200 (5)0.02020 (18)
H3A0.83540.93090.20220.024*
H3B0.62230.89220.18340.024*
C1A0.24956 (15)0.84572 (14)0.46101 (5)0.01507 (18)
H1AA0.10840.87900.46670.018*
C1B1.11431 (15)0.75402 (14)0.90711 (5)0.01505 (18)
H1BA1.17880.74820.86670.018*
C2A0.36551 (15)0.77640 (14)0.51351 (5)0.01593 (18)
H2AA0.30480.76330.55450.019*
C2B1.22778 (15)0.70459 (14)0.96180 (5)0.01522 (18)
H2BA1.36850.66640.95870.018*
C3B1.12614 (14)0.71350 (14)1.02109 (5)0.01397 (17)
C3A0.57532 (15)0.72731 (14)0.50276 (5)0.01424 (17)
C4A0.67164 (15)0.74110 (15)0.44250 (5)0.01592 (18)
H4AA0.81190.70380.43690.019*
C4B0.91589 (15)0.76542 (14)1.02843 (5)0.01527 (18)
H4BA0.85130.76671.06890.018*
C5A0.55303 (15)0.81214 (15)0.39071 (5)0.01621 (18)
H5AA0.61420.82390.34980.019*
C5B0.80500 (15)0.81538 (14)0.97324 (5)0.01517 (18)
H5BA0.66380.85120.97660.018*
C6A0.34218 (14)0.86598 (14)0.39989 (5)0.01412 (17)
C6B0.90370 (14)0.81237 (14)0.91270 (5)0.01388 (17)
C7A0.21250 (15)0.94696 (14)0.34447 (5)0.01498 (18)
C7B0.78049 (15)0.87820 (14)0.85437 (5)0.01578 (18)
C80.62995 (16)0.35854 (16)0.26207 (5)0.0195 (2)
H8A0.52600.27090.26230.023*
C90.59889 (15)0.54066 (15)0.23204 (5)0.01760 (19)
H9A0.47360.57750.21260.021*
C100.75805 (15)0.67391 (15)0.23052 (5)0.01566 (18)
C110.94501 (15)0.60896 (15)0.26128 (5)0.01670 (19)
H11A1.05380.69140.26110.020*
C120.96496 (16)0.42621 (16)0.29097 (5)0.0186 (2)
H12A1.08770.38490.31130.022*
H1N20.839 (2)0.1892 (15)0.3080 (7)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0250 (4)0.0384 (5)0.0118 (4)0.0024 (3)0.0008 (3)0.0048 (3)
O1B0.0158 (3)0.0428 (5)0.0191 (4)0.0041 (3)0.0028 (3)0.0013 (3)
O2A0.0172 (3)0.0361 (5)0.0207 (4)0.0016 (3)0.0036 (3)0.0012 (3)
O2B0.0228 (4)0.0485 (5)0.0115 (4)0.0012 (3)0.0006 (3)0.0003 (3)
O3A0.0183 (3)0.0303 (4)0.0116 (3)0.0013 (3)0.0025 (3)0.0027 (3)
O3B0.0174 (3)0.0258 (4)0.0114 (3)0.0009 (3)0.0003 (3)0.0006 (3)
O4A0.0158 (3)0.0236 (4)0.0182 (4)0.0011 (3)0.0016 (3)0.0026 (3)
O4B0.0145 (3)0.0368 (5)0.0198 (4)0.0011 (3)0.0020 (3)0.0071 (3)
N1A0.0179 (4)0.0178 (4)0.0145 (4)0.0016 (3)0.0034 (3)0.0001 (3)
N1B0.0167 (4)0.0194 (4)0.0131 (4)0.0003 (3)0.0014 (3)0.0010 (3)
N20.0213 (4)0.0188 (4)0.0161 (4)0.0014 (3)0.0009 (3)0.0017 (3)
N30.0160 (4)0.0212 (4)0.0224 (5)0.0005 (3)0.0014 (3)0.0045 (3)
C1A0.0146 (4)0.0166 (4)0.0140 (4)0.0011 (3)0.0003 (3)0.0006 (3)
C1B0.0156 (4)0.0177 (4)0.0114 (4)0.0009 (3)0.0001 (3)0.0004 (3)
C2A0.0172 (4)0.0180 (4)0.0127 (4)0.0030 (3)0.0005 (3)0.0001 (3)
C2B0.0139 (4)0.0175 (4)0.0140 (4)0.0009 (3)0.0001 (3)0.0010 (3)
C3B0.0151 (4)0.0154 (4)0.0114 (4)0.0001 (3)0.0023 (3)0.0003 (3)
C3A0.0168 (4)0.0143 (4)0.0118 (4)0.0017 (3)0.0030 (3)0.0002 (3)
C4A0.0141 (4)0.0193 (4)0.0143 (4)0.0007 (3)0.0005 (3)0.0013 (3)
C4B0.0158 (4)0.0175 (4)0.0125 (4)0.0018 (3)0.0009 (3)0.0007 (3)
C5A0.0163 (4)0.0206 (4)0.0117 (4)0.0015 (3)0.0000 (3)0.0013 (3)
C5B0.0131 (4)0.0180 (4)0.0142 (4)0.0005 (3)0.0002 (3)0.0001 (3)
C6A0.0154 (4)0.0147 (4)0.0125 (4)0.0018 (3)0.0021 (3)0.0006 (3)
C6B0.0143 (4)0.0151 (4)0.0122 (4)0.0013 (3)0.0014 (3)0.0005 (3)
C7A0.0173 (4)0.0153 (4)0.0125 (4)0.0026 (3)0.0018 (3)0.0002 (3)
C7B0.0157 (4)0.0167 (4)0.0149 (4)0.0007 (3)0.0022 (3)0.0001 (3)
C80.0175 (4)0.0233 (5)0.0178 (5)0.0023 (4)0.0008 (4)0.0016 (4)
C90.0138 (4)0.0231 (5)0.0156 (5)0.0006 (3)0.0012 (3)0.0001 (4)
C100.0144 (4)0.0199 (4)0.0123 (4)0.0012 (3)0.0005 (3)0.0009 (3)
C110.0151 (4)0.0203 (4)0.0148 (4)0.0004 (3)0.0020 (3)0.0015 (4)
C120.0178 (4)0.0232 (5)0.0143 (5)0.0029 (3)0.0023 (3)0.0010 (4)
Geometric parameters (Å, º) top
O1A—N1A1.2278 (12)C2A—H2AA0.93
O1B—N1B1.2294 (11)C2B—C3B1.3851 (14)
O2A—N1A1.2276 (11)C2B—H2BA0.93
O2B—N1B1.2244 (12)C3B—C4B1.3863 (13)
O3A—C7A1.2877 (12)C3A—C4A1.3848 (14)
O3A—H1O30.8200C4A—C5A1.3888 (14)
O3B—C7B1.2993 (12)C4A—H4AA0.93
O4A—C7A1.2362 (12)C4B—C5B1.3890 (14)
O4B—C7B1.2263 (12)C4B—H4BA0.93
N1A—C3A1.4743 (12)C5A—C6A1.3969 (13)
N1B—C3B1.4702 (13)C5A—H5AA0.93
N2—C121.3502 (14)C5B—C6B1.3977 (14)
N2—C81.3523 (14)C5B—H5BA0.93
N2—H1N20.844 (9)C6A—C7A1.5049 (13)
N3—C101.3301 (13)C6B—C7B1.5047 (13)
N3—H3A0.86C8—C91.3626 (15)
N3—H3B0.86C8—H8A0.93
C1A—C2A1.3877 (14)C9—C101.4180 (14)
C1A—C6A1.3930 (14)C9—H9A0.93
C1A—H1AA0.93C10—C111.4180 (13)
C1B—C2B1.3888 (13)C11—C121.3580 (15)
C1B—C6B1.3949 (13)C11—H11A0.93
C1B—H1BA0.93C12—H12A0.93
C2A—C3A1.3884 (13)
C7A—O3A—H1O3109.5C3B—C4B—H4BA121.2
O2A—N1A—O1A123.62 (9)C5B—C4B—H4BA121.2
O2A—N1A—C3A118.18 (9)C4A—C5A—C6A120.21 (9)
O1A—N1A—C3A118.20 (8)C4A—C5A—H5AA119.9
O2B—N1B—O1B123.36 (9)C6A—C5A—H5AA119.9
O2B—N1B—C3B118.43 (8)C4B—C5B—C6B120.61 (9)
O1B—N1B—C3B118.20 (9)C4B—C5B—H5BA119.7
C12—N2—C8120.86 (9)C6B—C5B—H5BA119.7
C12—N2—H1N2115.2 (11)C1A—C6A—C5A119.99 (9)
C8—N2—H1N2123.7 (11)C1A—C6A—C7A119.15 (8)
C10—N3—H3A120.0C5A—C6A—C7A120.86 (9)
C10—N3—H3B120.0C1B—C6B—C5B120.08 (9)
H3A—N3—H3B120.0C1B—C6B—C7B121.02 (9)
C2A—C1A—C6A120.74 (9)C5B—C6B—C7B118.88 (8)
C2A—C1A—H1AA119.6O4A—C7A—O3A125.63 (9)
C6A—C1A—H1AA119.6O4A—C7A—C6A119.65 (9)
C2B—C1B—C6B120.04 (9)O3A—C7A—C6A114.72 (8)
C2B—C1B—H1BA120.0O4B—C7B—O3B125.05 (9)
C6B—C1B—H1BA120.0O4B—C7B—C6B120.18 (9)
C1A—C2A—C3A117.70 (9)O3B—C7B—C6B114.75 (8)
C1A—C2A—H2AA121.2N2—C8—C9120.94 (10)
C3A—C2A—H2AA121.2N2—C8—H8A119.5
C3B—C2B—C1B118.35 (9)C9—C8—H8A119.5
C3B—C2B—H2BA120.8C8—C9—C10119.85 (9)
C1B—C2B—H2BA120.8C8—C9—H9A120.1
C2B—C3B—C4B123.20 (9)C10—C9—H9A120.1
C2B—C3B—N1B118.36 (8)N3—C10—C11120.35 (9)
C4B—C3B—N1B118.42 (9)N3—C10—C9122.38 (9)
C4A—C3A—C2A123.18 (9)C11—C10—C9117.27 (9)
C4A—C3A—N1A118.57 (8)C12—C11—C10119.88 (9)
C2A—C3A—N1A118.23 (9)C12—C11—H11A120.1
C3A—C4A—C5A118.16 (9)C10—C11—H11A120.1
C3A—C4A—H4AA120.9N2—C12—C11121.19 (9)
C5A—C4A—H4AA120.9N2—C12—H12A119.4
C3B—C4B—C5B117.67 (9)C11—C12—H12A119.4
C6A—C1A—C2A—C3A0.39 (14)C4A—C5A—C6A—C1A0.97 (14)
C6B—C1B—C2B—C3B0.50 (14)C4A—C5A—C6A—C7A178.78 (9)
C1B—C2B—C3B—C4B1.38 (15)C2B—C1B—C6B—C5B1.98 (14)
C1B—C2B—C3B—N1B176.79 (9)C2B—C1B—C6B—C7B176.30 (9)
O2B—N1B—C3B—C2B175.56 (9)C4B—C5B—C6B—C1B1.65 (14)
O1B—N1B—C3B—C2B5.40 (14)C4B—C5B—C6B—C7B176.66 (9)
O2B—N1B—C3B—C4B6.18 (14)C1A—C6A—C7A—O4A4.01 (14)
O1B—N1B—C3B—C4B172.86 (9)C5A—C6A—C7A—O4A176.24 (9)
C1A—C2A—C3A—C4A1.18 (15)C1A—C6A—C7A—O3A175.76 (8)
C1A—C2A—C3A—N1A177.40 (8)C5A—C6A—C7A—O3A3.99 (13)
O2A—N1A—C3A—C4A3.87 (13)C1B—C6B—C7B—O4B170.01 (9)
O1A—N1A—C3A—C4A176.87 (9)C5B—C6B—C7B—O4B11.69 (14)
O2A—N1A—C3A—C2A174.77 (9)C1B—C6B—C7B—O3B11.13 (13)
O1A—N1A—C3A—C2A4.48 (13)C5B—C6B—C7B—O3B167.17 (9)
C2A—C3A—C4A—C5A1.64 (15)C12—N2—C8—C91.21 (16)
N1A—C3A—C4A—C5A176.93 (8)N2—C8—C9—C101.08 (16)
C2B—C3B—C4B—C5B1.70 (15)C8—C9—C10—N3179.88 (10)
N1B—C3B—C4B—C5B176.47 (9)C8—C9—C10—C110.23 (15)
C3A—C4A—C5A—C6A0.53 (14)N3—C10—C11—C12179.16 (10)
C3B—C4B—C5B—C6B0.15 (14)C9—C10—C11—C120.50 (15)
C2A—C1A—C6A—C5A1.44 (14)C8—N2—C12—C110.45 (16)
C2A—C1A—C6A—C7A178.30 (9)C10—C11—C12—N20.41 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H1O3···O3Bi0.821.632.4457 (11)170
N3—H3A···O3Bii0.862.142.9977 (12)172
N3—H3B···O4Bi0.862.072.8758 (12)155
N2—H1N2···O4Aiii0.85 (1)1.99 (1)2.7726 (12)153 (1)
C2B—H2BA···O1Biv0.932.523.2187 (13)133
C8—H8A···O3Av0.932.563.4565 (13)161
C12—H12A···O1Avi0.932.553.4427 (13)162
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y1, z; (iv) x+3, y+1, z+2; (v) x, y1, z; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H7N2+·C7H4NO4·C7H5NO4
Mr428.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.4561 (1), 6.8598 (1), 20.9055 (3)
α, β, γ (°)85.826 (1), 87.975 (1), 86.188 (1)
V3)920.92 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.36 × 0.29
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.952, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
24945, 6647, 5169
Rint0.031
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.05
No. of reflections6647
No. of parameters284
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3A—H1O3···O3Bi0.821.632.4457 (11)170
N3—H3A···O3Bii0.862.142.9977 (12)172
N3—H3B···O4Bi0.862.072.8758 (12)155
N2—H1N2···O4Aiii0.85 (1)1.99 (1)2.7726 (12)153 (1)
C2B—H2BA···O1Biv0.932.523.2187 (13)133
C8—H8A···O3Av0.932.563.4565 (13)161
C12—H12A···O1Avi0.932.553.4427 (13)162
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y1, z; (iv) x+3, y+1, z+2; (v) x, y1, z; (vi) x+2, y+1, z+1.
 

Footnotes

Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. CKQ thanks Universiti Sains Malaysia for a student assistanceship.

References

First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAndrau, L. & White, J. (2003). Acta Cryst. E59, o77–o79.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater. 6, 531–537.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557–1564.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJudge, S. & Bever, C. (2006). Pharmacol. Ther. 111, 224–259.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1878-o1879
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds