organic compounds
1-Bromoacetyl-2,6-bis(4-methoxyphenyl)-3,5-dimethylpiperidin-4-one
aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, India, bDivision of Image and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr
In the title compound, C23H26BrNO4, the piperidinone ring adopts a boat conformation. The dihedral angle between the two benzene rings is 70.9 (1)°. The two methoxy groups are close to coplanar with the attached benzene rings [C—C—O—C torsion angles of 6.3 (5) and 16.4 (4)°]. A weak C—H⋯Br intramolecular interaction is observed. In the molecules are linked into a chain along [101] by intermolecular C—H⋯O hydrogen bonds. A short intermolecular Br⋯O contact [3.063 (2) Å] is observed.
Related literature
For background on the piperidine ring system, see: O'Hagan (2000); Pinder (1992). For information on the arylpiperidine scaffold, see: Horton et al. (2003). For piperidone derivatives, see: Baluja et al. (1964); Mutus et al. (1989). For the biological activities of compounds possessing an amide bond linkage, see: Priya et al. (2007); Bylov et al. (1999); Dollery (1999). For the activivities of chloroacetyl and heterocyclicacetyl derivatives of variously functionalized 2,6-diarylpiperidin-4-ones, see: Aridoss et al. (2007a,b; 2008a). For a related structure, see: Aridoss et al. (2008b). For ring see: Cremer & Pople (1975); Nardelli (1983).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808030213/ci2672sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808030213/ci2672Isup2.hkl
The title compound was obtained by adopting our earlier method (Aridoss et al., 2007a). To a well stirred solution of 3,5-dimethyl-2,6-bis(p-methoxyphenyl)piperidin-4-one (1 equiv.) and triethylamine (1 equiv.) in freshly distilled benzene, bromoacetyl chloride (1 equiv.) in benzene was added in drop wise through the addition funnel for about half an hour. Stirring was continued until the completion of reaction. Later, it was poured into water and extracted with DCM. The combined DCM extracts was then washed well with 3% sodium bicarbonate solution and dried over anhydrous sodium sulfate. This upon evaporation and subsequent recrystallization in distilled ethanol furnished the diffraction-quality crystals of the title compound.
H atoms were positioned geometrically and refined using a riding model, with aromatic C-H = 0.93 Å, methine C-H = 0.98 Å, methylene C-H = 0.97 Å and methyl C-H = 0.96 Å. The Uiso values were set at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the other H atoms.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C23H26BrNO4 | F(000) = 952 |
Mr = 460.36 | Dx = 1.422 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 5872 reflections |
a = 12.9487 (9) Å | θ = 1.6–31.2° |
b = 25.2882 (18) Å | µ = 1.94 mm−1 |
c = 8.9701 (6) Å | T = 293 K |
β = 132.930 (1)° | Prism, colourless |
V = 2150.6 (3) Å3 | 0.30 × 0.20 × 0.16 mm |
Z = 4 |
Bruker Kappa APEXII CCD diffractometer | 5139 independent reflections |
Radiation source: fine-focus sealed tube | 3748 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω and ϕ scans | θmax = 31.2°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −11→18 |
Tmin = 0.594, Tmax = 0.747 | k = −36→34 |
13660 measured reflections | l = −13→6 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0517P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
5139 reflections | Δρmax = 0.42 e Å−3 |
266 parameters | Δρmin = −0.22 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 1651 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.004 (7) |
C23H26BrNO4 | V = 2150.6 (3) Å3 |
Mr = 460.36 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 12.9487 (9) Å | µ = 1.94 mm−1 |
b = 25.2882 (18) Å | T = 293 K |
c = 8.9701 (6) Å | 0.30 × 0.20 × 0.16 mm |
β = 132.930 (1)° |
Bruker Kappa APEXII CCD diffractometer | 5139 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 3748 reflections with I > 2σ(I) |
Tmin = 0.594, Tmax = 0.747 | Rint = 0.023 |
13660 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.098 | Δρmax = 0.42 e Å−3 |
S = 1.02 | Δρmin = −0.22 e Å−3 |
5139 reflections | Absolute structure: Flack (1983), 1651 Friedel pairs |
266 parameters | Absolute structure parameter: 0.004 (7) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.66353 (4) | 0.384464 (14) | 1.04369 (5) | 0.06848 (12) | |
O1 | 0.5273 (2) | 0.48401 (7) | 0.6690 (3) | 0.0532 (5) | |
O2 | 0.6012 (3) | 0.29025 (9) | 0.3780 (5) | 0.0771 (8) | |
O3 | −0.0290 (3) | 0.45775 (10) | −0.4164 (4) | 0.0731 (7) | |
O4 | −0.0766 (2) | 0.31531 (9) | 0.3554 (3) | 0.0559 (5) | |
N1 | 0.4607 (2) | 0.40235 (8) | 0.5255 (3) | 0.0345 (4) | |
C1 | 0.4291 (3) | 0.34626 (9) | 0.5282 (4) | 0.0364 (5) | |
H1 | 0.5069 | 0.3326 | 0.6654 | 0.044* | |
C2 | 0.4229 (3) | 0.31286 (10) | 0.3780 (4) | 0.0416 (5) | |
H2 | 0.3356 | 0.3223 | 0.2401 | 0.050* | |
C3 | 0.5436 (3) | 0.32436 (11) | 0.3917 (4) | 0.0461 (6) | |
C4 | 0.5906 (4) | 0.38105 (11) | 0.4261 (6) | 0.0446 (7) | |
H4 | 0.6004 | 0.3901 | 0.3300 | 0.054* | |
C5 | 0.4839 (3) | 0.41869 (9) | 0.3917 (4) | 0.0381 (5) | |
H5 | 0.5306 | 0.4532 | 0.4424 | 0.046* | |
C6 | 0.3462 (3) | 0.42782 (9) | 0.1749 (4) | 0.0393 (5) | |
C7 | 0.3089 (3) | 0.40271 (11) | 0.0059 (4) | 0.0486 (6) | |
H7 | 0.3699 | 0.3780 | 0.0241 | 0.058* | |
C8 | 0.1835 (4) | 0.41381 (12) | −0.1874 (5) | 0.0561 (7) | |
H8 | 0.1600 | 0.3961 | −0.2979 | 0.067* | |
C9 | 0.0921 (3) | 0.45079 (11) | −0.2196 (4) | 0.0513 (7) | |
C10 | 0.1278 (3) | 0.47738 (12) | −0.0556 (5) | 0.0516 (7) | |
H10 | 0.0682 | 0.5031 | −0.0752 | 0.062* | |
C11 | 0.2541 (3) | 0.46518 (10) | 0.1394 (4) | 0.0455 (6) | |
H11 | 0.2772 | 0.4828 | 0.2497 | 0.055* | |
C12 | 0.2944 (3) | 0.33861 (9) | 0.4838 (4) | 0.0364 (5) | |
C13 | 0.1691 (3) | 0.36284 (11) | 0.3213 (4) | 0.0432 (6) | |
H13 | 0.1668 | 0.3853 | 0.2371 | 0.052* | |
C14 | 0.0474 (3) | 0.35416 (10) | 0.2822 (4) | 0.0447 (6) | |
H14 | −0.0360 | 0.3709 | 0.1725 | 0.054* | |
C15 | 0.0489 (3) | 0.32085 (10) | 0.4052 (4) | 0.0408 (5) | |
C16 | 0.1720 (4) | 0.29517 (10) | 0.5642 (5) | 0.0492 (6) | |
H16 | 0.1732 | 0.2717 | 0.6453 | 0.059* | |
C17 | 0.2921 (3) | 0.30430 (11) | 0.6021 (5) | 0.0488 (6) | |
H17 | 0.3747 | 0.2870 | 0.7105 | 0.059* | |
C18 | 0.4147 (5) | 0.25375 (12) | 0.4064 (7) | 0.0680 (9) | |
H18A | 0.4945 | 0.2439 | 0.5445 | 0.102* | |
H18B | 0.4151 | 0.2337 | 0.3159 | 0.102* | |
H18C | 0.3294 | 0.2466 | 0.3765 | 0.102* | |
C19 | 0.7355 (4) | 0.38566 (13) | 0.6430 (7) | 0.0598 (10) | |
H19A | 0.7995 | 0.3610 | 0.6607 | 0.090* | |
H19B | 0.7269 | 0.3779 | 0.7389 | 0.090* | |
H19C | 0.7708 | 0.4210 | 0.6653 | 0.090* | |
C20 | −0.1223 (5) | 0.49859 (18) | −0.4644 (7) | 0.0873 (12) | |
H20A | −0.0771 | 0.5322 | −0.4334 | 0.131* | |
H20B | −0.1470 | 0.4941 | −0.3857 | 0.131* | |
H20C | −0.2060 | 0.4971 | −0.6068 | 0.131* | |
C21 | −0.0739 (4) | 0.29285 (15) | 0.5013 (6) | 0.0656 (9) | |
H21A | −0.0047 | 0.3107 | 0.6291 | 0.098* | |
H21B | −0.0501 | 0.2560 | 0.5174 | 0.098* | |
H21C | −0.1650 | 0.2965 | 0.4571 | 0.098* | |
C22 | 0.4945 (3) | 0.43860 (10) | 0.6661 (4) | 0.0384 (5) | |
C23 | 0.4904 (3) | 0.42170 (11) | 0.8232 (4) | 0.0434 (6) | |
H23A | 0.4100 | 0.3987 | 0.7608 | 0.052* | |
H23B | 0.4802 | 0.4525 | 0.8766 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.05974 (18) | 0.0974 (3) | 0.04260 (14) | 0.01855 (19) | 0.03263 (13) | 0.01594 (17) |
O1 | 0.0652 (13) | 0.0408 (10) | 0.0590 (12) | −0.0060 (9) | 0.0444 (11) | −0.0084 (9) |
O2 | 0.0764 (17) | 0.0581 (13) | 0.123 (2) | −0.0063 (11) | 0.0782 (18) | −0.0271 (13) |
O3 | 0.0637 (15) | 0.0801 (15) | 0.0478 (12) | 0.0042 (12) | 0.0271 (12) | 0.0110 (11) |
O4 | 0.0489 (12) | 0.0669 (13) | 0.0613 (12) | −0.0003 (9) | 0.0412 (11) | 0.0063 (10) |
N1 | 0.0395 (11) | 0.0334 (9) | 0.0376 (10) | −0.0026 (8) | 0.0290 (9) | −0.0018 (8) |
C1 | 0.0388 (12) | 0.0350 (12) | 0.0381 (12) | 0.0030 (10) | 0.0272 (11) | 0.0031 (9) |
C2 | 0.0473 (14) | 0.0346 (12) | 0.0520 (14) | −0.0020 (10) | 0.0374 (13) | −0.0035 (11) |
C3 | 0.0457 (15) | 0.0475 (15) | 0.0512 (14) | 0.0007 (12) | 0.0354 (13) | −0.0075 (12) |
C4 | 0.0461 (19) | 0.0498 (16) | 0.0493 (19) | −0.0023 (11) | 0.0370 (17) | −0.0005 (12) |
C5 | 0.0482 (15) | 0.0341 (12) | 0.0449 (13) | −0.0028 (10) | 0.0369 (13) | −0.0007 (10) |
C6 | 0.0513 (15) | 0.0337 (12) | 0.0431 (12) | −0.0033 (10) | 0.0362 (12) | 0.0015 (9) |
C7 | 0.0624 (18) | 0.0442 (13) | 0.0469 (15) | 0.0056 (12) | 0.0402 (15) | 0.0020 (11) |
C8 | 0.073 (2) | 0.0501 (16) | 0.0428 (14) | 0.0030 (15) | 0.0384 (16) | 0.0000 (12) |
C9 | 0.0532 (17) | 0.0517 (16) | 0.0436 (14) | −0.0031 (13) | 0.0308 (14) | 0.0089 (12) |
C10 | 0.0560 (18) | 0.0474 (15) | 0.0543 (16) | 0.0074 (13) | 0.0387 (15) | 0.0074 (12) |
C11 | 0.0581 (17) | 0.0417 (14) | 0.0470 (14) | 0.0004 (12) | 0.0399 (14) | 0.0006 (11) |
C12 | 0.0423 (14) | 0.0329 (11) | 0.0405 (12) | −0.0008 (10) | 0.0307 (11) | 0.0005 (9) |
C13 | 0.0485 (15) | 0.0404 (13) | 0.0439 (13) | −0.0005 (11) | 0.0327 (13) | 0.0079 (11) |
C14 | 0.0392 (14) | 0.0450 (16) | 0.0425 (13) | 0.0041 (11) | 0.0250 (12) | 0.0089 (11) |
C15 | 0.0422 (14) | 0.0377 (13) | 0.0486 (14) | −0.0060 (11) | 0.0333 (13) | −0.0068 (11) |
C16 | 0.0549 (16) | 0.0480 (14) | 0.0563 (17) | 0.0030 (14) | 0.0424 (15) | 0.0127 (13) |
C17 | 0.0492 (16) | 0.0482 (15) | 0.0551 (16) | 0.0106 (12) | 0.0379 (15) | 0.0188 (13) |
C18 | 0.099 (3) | 0.0367 (15) | 0.105 (3) | −0.0042 (15) | 0.084 (3) | −0.0081 (16) |
C19 | 0.043 (2) | 0.060 (2) | 0.068 (3) | −0.0046 (13) | 0.035 (2) | −0.0127 (15) |
C20 | 0.076 (3) | 0.091 (3) | 0.078 (3) | 0.021 (2) | 0.046 (2) | 0.030 (2) |
C21 | 0.066 (2) | 0.087 (2) | 0.065 (2) | −0.0187 (17) | 0.0529 (19) | −0.0098 (17) |
C22 | 0.0332 (12) | 0.0415 (13) | 0.0373 (12) | 0.0018 (10) | 0.0227 (11) | −0.0022 (10) |
C23 | 0.0412 (14) | 0.0541 (16) | 0.0376 (12) | 0.0032 (11) | 0.0278 (12) | −0.0022 (11) |
Br1—C23 | 1.945 (3) | C10—C11 | 1.390 (4) |
O1—C22 | 1.219 (3) | C10—H10 | 0.93 |
O2—C3 | 1.201 (3) | C11—H11 | 0.93 |
O3—C9 | 1.354 (4) | C12—C13 | 1.382 (4) |
O3—C20 | 1.415 (5) | C12—C17 | 1.387 (4) |
O4—C15 | 1.367 (3) | C13—C14 | 1.379 (4) |
O4—C21 | 1.406 (4) | C13—H13 | 0.93 |
N1—C22 | 1.368 (3) | C14—C15 | 1.377 (4) |
N1—C5 | 1.481 (3) | C14—H14 | 0.93 |
N1—C1 | 1.481 (3) | C15—C16 | 1.378 (4) |
C1—C12 | 1.513 (3) | C16—C17 | 1.366 (5) |
C1—C2 | 1.546 (3) | C16—H16 | 0.93 |
C1—H1 | 0.9800 | C17—H17 | 0.93 |
C2—C3 | 1.509 (4) | C18—H18A | 0.96 |
C2—C18 | 1.532 (4) | C18—H18B | 0.96 |
C2—H2 | 0.98 | C18—H18C | 0.96 |
C3—C4 | 1.505 (4) | C19—H19A | 0.96 |
C4—C5 | 1.526 (4) | C19—H19B | 0.96 |
C4—C19 | 1.532 (4) | C19—H19C | 0.96 |
C4—H4 | 0.98 | C20—H20A | 0.96 |
C5—C6 | 1.514 (4) | C20—H20B | 0.96 |
C5—H5 | 0.98 | C20—H20C | 0.96 |
C6—C11 | 1.378 (4) | C21—H21A | 0.96 |
C6—C7 | 1.392 (4) | C21—H21B | 0.96 |
C7—C8 | 1.374 (4) | C21—H21C | 0.96 |
C7—H7 | 0.93 | C22—C23 | 1.507 (4) |
C8—C9 | 1.375 (5) | C23—H23A | 0.97 |
C8—H8 | 0.93 | C23—H23B | 0.97 |
C9—C10 | 1.380 (4) | ||
C9—O3—C20 | 118.8 (3) | C13—C12—C1 | 122.4 (2) |
C15—O4—C21 | 117.8 (2) | C17—C12—C1 | 120.0 (2) |
C22—N1—C5 | 116.5 (2) | C14—C13—C12 | 121.0 (2) |
C22—N1—C1 | 123.0 (2) | C14—C13—H13 | 119.5 |
C5—N1—C1 | 119.5 (2) | C12—C13—H13 | 119.5 |
N1—C1—C12 | 113.59 (19) | C15—C14—C13 | 120.2 (2) |
N1—C1—C2 | 111.07 (19) | C15—C14—H14 | 119.9 |
C12—C1—C2 | 109.6 (2) | C13—C14—H14 | 119.9 |
N1—C1—H1 | 107.5 | O4—C15—C14 | 115.8 (2) |
C12—C1—H1 | 107.5 | O4—C15—C16 | 124.7 (2) |
C2—C1—H1 | 107.5 | C14—C15—C16 | 119.5 (3) |
C3—C2—C18 | 111.1 (2) | C17—C16—C15 | 119.7 (3) |
C3—C2—C1 | 112.8 (2) | C17—C16—H16 | 120.1 |
C18—C2—C1 | 110.9 (2) | C15—C16—H16 | 120.1 |
C3—C2—H2 | 107.3 | C16—C17—C12 | 122.0 (3) |
C18—C2—H2 | 107.3 | C16—C17—H17 | 119.0 |
C1—C2—H2 | 107.3 | C12—C17—H17 | 119.0 |
O2—C3—C4 | 120.8 (3) | C2—C18—H18A | 109.5 |
O2—C3—C2 | 122.3 (3) | C2—C18—H18B | 109.5 |
C4—C3—C2 | 116.9 (2) | H18A—C18—H18B | 109.5 |
C3—C4—C5 | 111.6 (3) | C2—C18—H18C | 109.5 |
C3—C4—C19 | 107.9 (3) | H18A—C18—H18C | 109.5 |
C5—C4—C19 | 111.5 (2) | H18B—C18—H18C | 109.5 |
C3—C4—H4 | 108.6 | C4—C19—H19A | 109.5 |
C5—C4—H4 | 108.6 | C4—C19—H19B | 109.5 |
C19—C4—H4 | 108.6 | H19A—C19—H19B | 109.5 |
N1—C5—C6 | 111.9 (2) | C4—C19—H19C | 109.5 |
N1—C5—C4 | 108.5 (2) | H19A—C19—H19C | 109.5 |
C6—C5—C4 | 117.8 (2) | H19B—C19—H19C | 109.5 |
N1—C5—H5 | 105.9 | O3—C20—H20A | 109.5 |
C6—C5—H5 | 105.9 | O3—C20—H20B | 109.5 |
C4—C5—H5 | 105.9 | H20A—C20—H20B | 109.5 |
C11—C6—C7 | 117.2 (3) | O3—C20—H20C | 109.5 |
C11—C6—C5 | 118.5 (2) | H20A—C20—H20C | 109.5 |
C7—C6—C5 | 124.2 (2) | H20B—C20—H20C | 109.5 |
C8—C7—C6 | 121.1 (3) | O4—C21—H21A | 109.5 |
C8—C7—H7 | 119.4 | O4—C21—H21B | 109.5 |
C6—C7—H7 | 119.4 | H21A—C21—H21B | 109.5 |
C7—C8—C9 | 120.8 (3) | O4—C21—H21C | 109.5 |
C7—C8—H8 | 119.6 | H21A—C21—H21C | 109.5 |
C9—C8—H8 | 119.6 | H21B—C21—H21C | 109.5 |
O3—C9—C8 | 115.4 (3) | O1—C22—N1 | 122.6 (2) |
O3—C9—C10 | 125.2 (3) | O1—C22—C23 | 118.8 (2) |
C8—C9—C10 | 119.4 (3) | N1—C22—C23 | 118.6 (2) |
C9—C10—C11 | 119.1 (3) | C22—C23—Br1 | 109.78 (17) |
C9—C10—H10 | 120.5 | C22—C23—H23A | 109.7 |
C11—C10—H10 | 120.5 | Br1—C23—H23A | 109.7 |
C6—C11—C10 | 122.3 (3) | C22—C23—H23B | 109.7 |
C6—C11—H11 | 118.9 | Br1—C23—H23B | 109.7 |
C10—C11—H11 | 118.9 | H23A—C23—H23B | 108.2 |
C13—C12—C17 | 117.5 (2) | ||
C22—N1—C1—C12 | 66.9 (3) | C20—O3—C9—C8 | −174.0 (3) |
C5—N1—C1—C12 | −125.1 (2) | C20—O3—C9—C10 | 6.3 (5) |
C22—N1—C1—C2 | −169.1 (2) | C7—C8—C9—O3 | −179.1 (3) |
C5—N1—C1—C2 | −1.1 (3) | C7—C8—C9—C10 | 0.6 (4) |
N1—C1—C2—C3 | 45.3 (3) | O3—C9—C10—C11 | 178.2 (3) |
C12—C1—C2—C3 | 171.6 (2) | C8—C9—C10—C11 | −1.6 (4) |
N1—C1—C2—C18 | 170.6 (2) | C7—C6—C11—C10 | 0.8 (4) |
C12—C1—C2—C18 | −63.1 (3) | C5—C6—C11—C10 | 177.7 (3) |
C18—C2—C3—O2 | 16.2 (4) | C9—C10—C11—C6 | 0.9 (4) |
C1—C2—C3—O2 | 141.4 (3) | N1—C1—C12—C13 | 48.1 (3) |
C18—C2—C3—C4 | −163.2 (3) | C2—C1—C12—C13 | −76.8 (3) |
C1—C2—C3—C4 | −38.0 (3) | N1—C1—C12—C17 | −135.1 (2) |
O2—C3—C4—C5 | 167.3 (3) | C2—C1—C12—C17 | 100.1 (3) |
C2—C3—C4—C5 | −13.3 (4) | C17—C12—C13—C14 | 1.7 (4) |
O2—C3—C4—C19 | −69.9 (4) | C1—C12—C13—C14 | 178.6 (2) |
C2—C3—C4—C19 | 109.5 (3) | C12—C13—C14—C15 | −0.2 (4) |
C22—N1—C5—C6 | −109.2 (2) | C21—O4—C15—C14 | −164.6 (3) |
C1—N1—C5—C6 | 82.0 (3) | C21—O4—C15—C16 | 16.4 (4) |
C22—N1—C5—C4 | 119.1 (2) | C13—C14—C15—O4 | 179.3 (2) |
C1—N1—C5—C4 | −49.7 (3) | C13—C14—C15—C16 | −1.7 (4) |
C3—C4—C5—N1 | 55.9 (3) | O4—C15—C16—C17 | −179.0 (3) |
C19—C4—C5—N1 | −64.8 (3) | C14—C15—C16—C17 | 2.1 (4) |
C3—C4—C5—C6 | −72.5 (3) | C15—C16—C17—C12 | −0.6 (5) |
C19—C4—C5—C6 | 166.8 (2) | C13—C12—C17—C16 | −1.3 (4) |
N1—C5—C6—C11 | 58.9 (3) | C1—C12—C17—C16 | −178.3 (3) |
C4—C5—C6—C11 | −174.3 (2) | C5—N1—C22—O1 | 7.8 (4) |
N1—C5—C6—C7 | −124.5 (3) | C1—N1—C22—O1 | 176.2 (2) |
C4—C5—C6—C7 | 2.3 (4) | C5—N1—C22—C23 | −172.4 (2) |
C11—C6—C7—C8 | −1.8 (4) | C1—N1—C22—C23 | −4.0 (4) |
C5—C6—C7—C8 | −178.4 (3) | O1—C22—C23—Br1 | −98.9 (3) |
C6—C7—C8—C9 | 1.1 (5) | N1—C22—C23—Br1 | 81.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Br1 | 0.98 | 2.82 | 3.523 (3) | 129 |
C20—H20C···O1i | 0.96 | 2.60 | 3.357 (7) | 136 |
Symmetry code: (i) x−1, −y+1, z−3/2. |
Experimental details
Crystal data | |
Chemical formula | C23H26BrNO4 |
Mr | 460.36 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 293 |
a, b, c (Å) | 12.9487 (9), 25.2882 (18), 8.9701 (6) |
β (°) | 132.930 (1) |
V (Å3) | 2150.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.94 |
Crystal size (mm) | 0.30 × 0.20 × 0.16 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.594, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13660, 5139, 3748 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.729 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.098, 1.02 |
No. of reflections | 5139 |
No. of parameters | 266 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.22 |
Absolute structure | Flack (1983), 1651 Friedel pairs |
Absolute structure parameter | 0.004 (7) |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Br1 | 0.98 | 2.82 | 3.523 (3) | 129 |
C20—H20C···O1i | 0.96 | 2.60 | 3.357 (7) | 136 |
Symmetry code: (i) x−1, −y+1, z−3/2. |
Acknowledgements
GA and YTJ acknowledge support provided by the second stage of the BK21 program, Republic of Korea. Financial support from the University Grants Commission (UGC–SAP) and the Department of Science & Technology (DST–FIST), Government of India, are acknowledged by DV for providing facilities to the department.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Aridoss, G., Amirthaganesan, S., Kim, M. S., Cho, B. G., Lim, K. T. & Jeong, Y. T. (2008b). Arkivoc, XV, 133–158. CrossRef Google Scholar
Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007b). Eur. J. Med. Chem. 42, 851–860. Web of Science CrossRef PubMed CAS Google Scholar
Aridoss, G., Balasubramanian, S., Parthiban, P., Ramachandran, R. & Kabilan, S. (2007a). Med. Chem. Res. 16, 188–204. Web of Science CrossRef CAS Google Scholar
Aridoss, G., Parthiban, P., Ramachandran, R., Prakash, M., Kabilan, S. & Jeong, Y. T. (2008a). Eur. J. Med. Chem. 10, doi:10.1016/j.ejmech.2008.03.031. Google Scholar
Baluja, G., Municio, A. M. & Vega, S. (1964). Chem. Ind. pp. 2053–2054. Google Scholar
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bylov, I. E., Vasylev, M. V. & Bilokin, Y. V. (1999). Eur. J. Med. Chem. 34, 997–1001. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dollery, C. (1999). Therapeutic Drugs. Edinburgh, Scotland: Churchill Livingstone. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930. Web of Science CrossRef PubMed CAS Google Scholar
Mutus, B., Wagner, J. D., Talpas, C. J., Dimmock, J. R., Phillips, O. A. & Reid, R. S. (1989). Anal. Biochem. 177, 237–243. CrossRef CAS PubMed Web of Science Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
O'Hagan, D. (2000). Nat. Prod. Rep. 17, 435–446. Web of Science CrossRef PubMed CAS Google Scholar
Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504. CrossRef CAS Web of Science Google Scholar
Priya, B. S., Anil Kumar, C., Nanjunda Swamy, S., Basappa, S., Naveen, S., Shashidhara Prasad, J. & Rangappa, K. S. (2007). Bioorg. Med. Chem. Lett. 17, 2775–2780. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The piperidine ring system is ubiquitous structural component of naturally occurring alkaloid and pharmaceuticals (O'Hagan, 2000; Pinder, 1992). Its biological properties are highly dependent on the type and location of substituents on the heterocyclic ring. The arylpiperidine scaffold is a key element involved in binding to a variety of receptors and therefore can be described as a privileged structure (Horton et al., 2003). Similarly, piperidone derivatives have also received wide interest among chemists and biologists due to their envisaged mode of interaction with cellular thiols, with modest or no affinity for the hydroxy and amine groups found in nucleic acids (Baluja et al., 1964; Mutus et al., 1989). Generally, compounds possessing an amide bond linkage have a wide range of biological activities such as antimicrobial (Priya et al., 2007), anti-inflammatory (Bylov et al., 1999), antiviral, antimalarial and general anesthetics (Dollery, 1999). Recently, we have explored the antimicrobial, analgesic and antipyretic activities associated with chloroacetyl and heterocyclicacetyl derivatives of variously functionalized 2,6-diarylpiperidin-4-ones besides the change in piperidone ring conformation (Aridoss et al., 2007a,b, 2008a). Thus, it has spurred our interest to synthesize diversely substituted 2,6-diarylpiperidin-4-ones and their derivatives. In order to establish the change in molecular conformation of piperidone ring upon bromoacetylation, the present investigation was made and confirmed by X-ray diffraction study.
The bond lengths and angles in the title molecule (Fig.1) are comparable to those observed in a related structure (Aridoss et al., 2008b). The sum of the angles at N1 (359.0 (6)°) is in accordance with sp2 hybridization. The decrease in the N1—C22 bond length (1.368 (3) Å) when compared to C1—N1 (1.481 (3) Å) and C5—N1 (1.481 (3) Å) lengths indicates the effective conjugation between lone pair of nitrogen with carbonyl group. The N-COCH2 group is coplanar as confirmed by the torsion angles C1—N1—C22—C23 of -4.0 (4)° and C5—N1—C22—O1 of -172.4 (2)°. The dihedral angle between the two benzene rings is 70.9 (1)°. The C10—C9—O3—C20 (6.3 (5)°) and C16—C15—O4—C21 (16.4 (4)°) torsion angles indicate that the methoxy groups almost lie in the plane of the phenyl rings C6—C11 and C12—C17, respectively, to which they are attached.
The piperidinone ring adopts a boat conformation with the puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) being q2 = 0.673 (4) Å, q3 = -0.051 (4) Å, QT = 0.675 (4)Å, θ = 94.3 (3)° and ΔCs(C2) = 10.0 (3)°. A weak C—H···Br intramolecular interaction is observed in the molecular structure. In the crystal packing, the molecules are linked into a chain along [101] by intermolecular C—H···O hydrogen bonds (Fig. 2). A short intermolecular Br1···O4 (1+x, y, 1+z) contact of 3.063 (2) Å has been observed.