organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­acetyl-3,3-di­methyl-2,6-di­phenyl­piperidin-4-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 September 2008; accepted 25 September 2008; online 30 September 2008)

In the mol­ecule of the title compound, C21H22ClNO2, the piperidine ring adopts a distorted boat conformation. The two phenyl rings are nearly orthogonal to each other with a dihedral angle of 87.1 (1)°. In the crystal structure, the mol­ecules are linked into a three-dimensional network by C—H⋯O and C—H⋯π inter­actions.

Related literature

For general background, see: Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]); Perumal et al. (2001[Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22ClNO2

  • Mr = 355.85

  • Monoclinic, P 21 /n

  • a = 13.7005 (3) Å

  • b = 9.8735 (2) Å

  • c = 14.8960 (3) Å

  • β = 112.762 (1)°

  • V = 1858.08 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 (2) K

  • 0.32 × 0.26 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.854, Tmax = 0.958

  • 22063 measured reflections

  • 4674 independent reflections

  • 3424 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.154

  • S = 1.01

  • 4674 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.98 2.46 3.426 (2) 168
C8—H8B⋯O2i 0.97 2.53 3.495 (3) 172
C21—H21⋯O1ii 0.93 2.53 3.248 (3) 134
C11—H11⋯Cg1iii 0.93 2.73 3.568 (2) 150
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Piperidones are the important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities, including cytotoxic properties (Dimmock et al., 2001). They were also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activities (Perumal et al., 2001).

The sum of bond angles around N1 atom (359.4°) indicates sp2 hybridization. The N1—C7 [1.360 (2) Å] and C7—O2 [1.220 (2) Å] distances indicate electron delocalization. The piperidine ring adopts a distorted boat conformation, confirmed by puckering parameters q2 = 0.612 (2) Å, q3 = -0.122 (2) Å and ϕ 2 = 258.0 (2)° (Cremer & Pople, 1975) and the asymmetry parameter Δs(C2) = Δs(C5) = 19.2 (2)° (Nardelli, 1983). The two phenyl rings are nearly orthogonal to each other with a dihedral angle of 87.1 (1)°. The methyl substituents are oriented equatorially [N1—C2—C3—C16 = 175.3 (2)°] and axially [N1—C2—C3—C15 = 55.1 (2)°] at C3 position.

The crystal structure is stabilized by C—H···O and C—H···π intermolecular interactions. The glide-related molecules are linked into a chain along the b axis by C6—H6···O2i and C8—H8B···O2i hydrogen bonds, and the chains are cross-linked via C21—H21···O1ii hydrogen bonds; symmetry codes are given in Table 1. In addition, C—H···π interactions involving the C17–C22 ring (centroid Cg1) are observed.

Related literature top

For general background, see: Dimmock et al. (2001); Perumal et al. (2001). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A mixture of 3,3-dimethyl-cis-2,6-diphenylpiperidin-4-one (1.4 g, 5 mmol), chloro acetylchloride (0.8 ml, 5 mmol) and triethylamine (2 ml, 14.4 mmol) in anhydrous benzene (20 ml) was stirred at room temperature for 7 h. The benzene solution was dried over anhydrous Na2SO4 and concentrated to obtain a pasty mass. It was purified by crystallization from benzene–petroleum ether (95:5, 60–80°C).

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 20% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonding have been omitted.
1-Chloroacetyl-3,3-dimethyl-2,6-diphenylpiperidin-4-one top
Crystal data top
C21H22ClNO2F(000) = 752
Mr = 355.85Dx = 1.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4674 reflections
a = 13.7005 (3) Åθ = 2.5–28.5°
b = 9.8735 (2) ŵ = 0.22 mm1
c = 14.8960 (3) ÅT = 293 K
β = 112.762 (1)°Block, colourless
V = 1858.08 (7) Å30.32 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4674 independent reflections
Radiation source: fine-focus sealed tube3424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 28.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1818
Tmin = 0.854, Tmax = 0.958k = 1113
22063 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0741P)2 + 0.7704P]
where P = (Fo2 + 2Fc2)/3
4674 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C21H22ClNO2V = 1858.08 (7) Å3
Mr = 355.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.7005 (3) ŵ = 0.22 mm1
b = 9.8735 (2) ÅT = 293 K
c = 14.8960 (3) Å0.32 × 0.26 × 0.20 mm
β = 112.762 (1)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4674 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3424 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.958Rint = 0.025
22063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.01Δρmax = 0.68 e Å3
4674 reflectionsΔρmin = 0.66 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.20338 (13)0.74492 (17)0.41291 (11)0.0364 (3)
H20.22630.82530.38780.044*
C30.30126 (14)0.6958 (2)0.50015 (13)0.0457 (4)
C40.27691 (14)0.56295 (19)0.53752 (13)0.0460 (4)
C50.19260 (15)0.47683 (18)0.46543 (13)0.0450 (4)
H5A0.12750.49120.47550.054*
H5B0.21250.38280.48080.054*
C60.16822 (13)0.49786 (17)0.35689 (12)0.0374 (3)
H60.22160.44860.34110.045*
C70.16925 (13)0.68513 (18)0.24518 (12)0.0392 (4)
C80.15274 (18)0.5752 (2)0.16986 (14)0.0536 (5)
H8A0.08340.53500.15370.064*
H8B0.20530.50480.19720.064*
C90.10539 (13)0.78759 (16)0.43001 (11)0.0372 (3)
C100.08432 (16)0.75494 (19)0.51136 (13)0.0462 (4)
H100.13390.70620.56200.055*
C110.00972 (18)0.7942 (2)0.51791 (15)0.0547 (5)
H110.02250.77170.57300.066*
C120.08371 (17)0.8654 (2)0.44463 (16)0.0569 (5)
H120.14700.89060.44930.068*
C130.06398 (16)0.8999 (2)0.36330 (15)0.0558 (5)
H130.11390.94900.31320.067*
C140.02930 (15)0.86157 (19)0.35629 (13)0.0451 (4)
H140.04180.88550.30130.054*
C150.39135 (16)0.6647 (3)0.46568 (19)0.0695 (7)
H15A0.41030.74590.44090.104*
H15B0.36810.59750.41520.104*
H15C0.45170.63130.51940.104*
C160.33953 (19)0.8035 (2)0.58046 (15)0.0635 (6)
H16A0.35420.88620.55410.095*
H16B0.40280.77240.63210.095*
H16C0.28560.81940.60540.095*
C170.06144 (13)0.43346 (18)0.30018 (12)0.0402 (4)
C180.03188 (15)0.4922 (2)0.29576 (15)0.0514 (5)
H180.03080.57720.32300.062*
C190.12687 (16)0.4244 (3)0.25075 (18)0.0653 (6)
H190.18960.46430.24770.078*
C200.12916 (18)0.2988 (3)0.21055 (17)0.0672 (6)
H200.19320.25340.18100.081*
C210.0373 (2)0.2404 (2)0.21401 (17)0.0645 (6)
H210.03890.15560.18620.077*
C220.05803 (17)0.3072 (2)0.25877 (14)0.0517 (5)
H220.12030.26690.26110.062*
Cl10.16240 (6)0.63835 (7)0.06314 (4)0.0778 (2)
N10.17457 (10)0.64277 (14)0.33383 (9)0.0350 (3)
O10.32116 (13)0.52655 (16)0.62105 (10)0.0706 (5)
O20.17704 (12)0.80385 (14)0.22634 (10)0.0518 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0408 (8)0.0334 (8)0.0325 (8)0.0040 (6)0.0113 (6)0.0006 (6)
C30.0407 (8)0.0456 (10)0.0409 (9)0.0039 (7)0.0049 (7)0.0007 (7)
C40.0477 (9)0.0416 (10)0.0396 (9)0.0071 (8)0.0070 (7)0.0041 (7)
C50.0533 (10)0.0358 (9)0.0399 (9)0.0014 (7)0.0114 (8)0.0063 (7)
C60.0398 (8)0.0331 (8)0.0384 (8)0.0020 (6)0.0143 (7)0.0000 (6)
C70.0394 (8)0.0433 (10)0.0375 (8)0.0005 (7)0.0177 (7)0.0022 (7)
C80.0761 (13)0.0507 (11)0.0404 (9)0.0006 (10)0.0295 (9)0.0007 (8)
C90.0452 (8)0.0321 (8)0.0328 (8)0.0034 (7)0.0136 (6)0.0017 (6)
C100.0599 (10)0.0423 (10)0.0382 (9)0.0002 (8)0.0210 (8)0.0036 (7)
C110.0692 (12)0.0547 (12)0.0506 (11)0.0083 (10)0.0346 (10)0.0026 (9)
C120.0509 (10)0.0616 (13)0.0633 (13)0.0042 (9)0.0278 (10)0.0119 (10)
C130.0501 (10)0.0628 (13)0.0487 (11)0.0097 (9)0.0127 (8)0.0009 (9)
C140.0521 (10)0.0471 (10)0.0356 (8)0.0046 (8)0.0164 (7)0.0025 (7)
C150.0394 (10)0.0911 (18)0.0705 (15)0.0000 (10)0.0129 (10)0.0047 (13)
C160.0668 (13)0.0553 (12)0.0468 (11)0.0150 (10)0.0016 (9)0.0027 (9)
C170.0453 (9)0.0390 (9)0.0351 (8)0.0074 (7)0.0144 (7)0.0031 (7)
C180.0458 (9)0.0456 (10)0.0566 (11)0.0039 (8)0.0129 (8)0.0041 (9)
C190.0424 (10)0.0691 (15)0.0728 (15)0.0048 (10)0.0096 (10)0.0161 (12)
C200.0586 (12)0.0710 (15)0.0568 (12)0.0287 (11)0.0057 (10)0.0037 (11)
C210.0760 (15)0.0581 (13)0.0567 (12)0.0258 (11)0.0225 (11)0.0140 (10)
C220.0605 (11)0.0497 (11)0.0489 (10)0.0143 (9)0.0256 (9)0.0101 (8)
Cl10.1234 (6)0.0747 (4)0.0530 (3)0.0077 (4)0.0534 (4)0.0031 (3)
N10.0387 (7)0.0337 (7)0.0327 (7)0.0025 (5)0.0139 (5)0.0002 (5)
O10.0861 (11)0.0565 (9)0.0427 (8)0.0064 (8)0.0041 (7)0.0112 (7)
O20.0714 (9)0.0441 (7)0.0471 (7)0.0043 (6)0.0308 (7)0.0057 (6)
Geometric parameters (Å, º) top
C2—N11.483 (2)C11—C121.363 (3)
C2—C91.520 (2)C11—H110.93
C2—C31.541 (2)C12—C131.382 (3)
C2—H20.98C12—H120.93
C3—C41.512 (3)C13—C141.375 (3)
C3—C161.534 (3)C13—H130.93
C3—C151.540 (3)C14—H140.93
C4—O11.209 (2)C15—H15A0.96
C4—C51.500 (3)C15—H15B0.96
C5—C61.533 (2)C15—H15C0.96
C5—H5A0.97C16—H16A0.96
C5—H5B0.97C16—H16B0.96
C6—N11.482 (2)C16—H16C0.96
C6—C171.517 (2)C17—C181.382 (3)
C6—H60.98C17—C221.384 (3)
C7—O21.220 (2)C18—C191.384 (3)
C7—N11.360 (2)C18—H180.93
C7—C81.514 (3)C19—C201.372 (4)
C8—Cl11.7595 (19)C19—H190.93
C8—H8A0.97C20—C211.367 (4)
C8—H8B0.97C20—H200.93
C9—C101.388 (2)C21—C221.382 (3)
C9—C141.393 (2)C21—H210.93
C10—C111.385 (3)C22—H220.93
C10—H100.93
N1—C2—C9109.92 (12)C10—C11—H11119.6
N1—C2—C3109.45 (14)C11—C12—C13119.48 (19)
C9—C2—C3118.87 (14)C11—C12—H12120.3
N1—C2—H2105.9C13—C12—H12120.3
C9—C2—H2105.9C14—C13—C12120.11 (19)
C3—C2—H2105.9C14—C13—H13119.9
C4—C3—C16111.85 (16)C12—C13—H13119.9
C4—C3—C15105.63 (18)C13—C14—C9121.22 (18)
C16—C3—C15108.79 (18)C13—C14—H14119.4
C4—C3—C2109.86 (14)C9—C14—H14119.4
C16—C3—C2111.27 (16)C3—C15—H15A109.5
C15—C3—C2109.26 (16)C3—C15—H15B109.5
O1—C4—C5120.59 (18)H15A—C15—H15B109.5
O1—C4—C3122.87 (17)C3—C15—H15C109.5
C5—C4—C3116.54 (15)H15A—C15—H15C109.5
C4—C5—C6118.12 (15)H15B—C15—H15C109.5
C4—C5—H5A107.8C3—C16—H16A109.5
C6—C5—H5A107.8C3—C16—H16B109.5
C4—C5—H5B107.8H16A—C16—H16B109.5
C6—C5—H5B107.8C3—C16—H16C109.5
H5A—C5—H5B107.1H16A—C16—H16C109.5
N1—C6—C17113.96 (13)H16B—C16—H16C109.5
N1—C6—C5111.52 (14)C18—C17—C22119.07 (17)
C17—C6—C5107.46 (13)C18—C17—C6121.70 (16)
N1—C6—H6107.9C22—C17—C6119.00 (16)
C17—C6—H6107.9C17—C18—C19119.9 (2)
C5—C6—H6107.9C17—C18—H18120.0
O2—C7—N1122.85 (16)C19—C18—H18120.0
O2—C7—C8121.32 (16)C20—C19—C18120.4 (2)
N1—C7—C8115.83 (15)C20—C19—H19119.8
C7—C8—Cl1111.96 (14)C18—C19—H19119.8
C7—C8—H8A109.2C21—C20—C19120.0 (2)
Cl1—C8—H8A109.2C21—C20—H20120.0
C7—C8—H8B109.2C19—C20—H20120.0
Cl1—C8—H8B109.2C20—C21—C22120.1 (2)
H8A—C8—H8B107.9C20—C21—H21120.0
C10—C9—C14117.72 (16)C22—C21—H21120.0
C10—C9—C2125.29 (15)C21—C22—C17120.5 (2)
C14—C9—C2116.96 (15)C21—C22—H22119.8
C11—C10—C9120.67 (18)C17—C22—H22119.8
C11—C10—H10119.7C7—N1—C6122.42 (14)
C9—C10—H10119.7C7—N1—C2117.37 (13)
C12—C11—C10120.80 (18)C6—N1—C2119.59 (13)
C12—C11—H11119.6
N1—C2—C3—C460.29 (18)C12—C13—C14—C90.2 (3)
C9—C2—C3—C467.1 (2)C10—C9—C14—C130.6 (3)
N1—C2—C3—C16175.29 (15)C2—C9—C14—C13177.27 (17)
C9—C2—C3—C1657.3 (2)N1—C6—C17—C1850.6 (2)
N1—C2—C3—C1555.1 (2)C5—C6—C17—C1873.5 (2)
C9—C2—C3—C15177.45 (17)N1—C6—C17—C22134.95 (16)
C16—C3—C4—O128.9 (3)C5—C6—C17—C22100.95 (19)
C15—C3—C4—O189.3 (2)C22—C17—C18—C190.3 (3)
C2—C3—C4—O1153.0 (2)C6—C17—C18—C19174.15 (18)
C16—C3—C4—C5150.31 (18)C17—C18—C19—C200.2 (3)
C15—C3—C4—C591.50 (19)C18—C19—C20—C210.6 (4)
C2—C3—C4—C526.2 (2)C19—C20—C21—C220.6 (4)
O1—C4—C5—C6157.96 (19)C20—C21—C22—C170.2 (3)
C3—C4—C5—C622.8 (2)C18—C17—C22—C210.3 (3)
C4—C5—C6—N137.4 (2)C6—C17—C22—C21174.29 (18)
C4—C5—C6—C17162.92 (16)O2—C7—N1—C6178.13 (16)
O2—C7—C8—Cl17.0 (2)C8—C7—N1—C61.9 (2)
N1—C7—C8—Cl1173.12 (13)O2—C7—N1—C27.2 (2)
N1—C2—C9—C10109.58 (18)C8—C7—N1—C2172.90 (15)
C3—C2—C9—C1017.6 (2)C17—C6—N1—C766.5 (2)
N1—C2—C9—C1468.14 (18)C5—C6—N1—C7171.59 (15)
C3—C2—C9—C14164.68 (16)C17—C6—N1—C2122.72 (15)
C14—C9—C10—C110.5 (3)C5—C6—N1—C20.8 (2)
C2—C9—C10—C11177.24 (17)C9—C2—N1—C7104.00 (16)
C9—C10—C11—C120.2 (3)C3—C2—N1—C7123.72 (15)
C10—C11—C12—C130.6 (3)C9—C2—N1—C684.78 (17)
C11—C12—C13—C140.5 (3)C3—C2—N1—C647.50 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.463.426 (2)168
C8—H8B···O2i0.972.533.495 (3)172
C21—H21···O1ii0.932.533.248 (3)134
C11—H11···Cg1iii0.932.733.568 (2)150
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H22ClNO2
Mr355.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.7005 (3), 9.8735 (2), 14.8960 (3)
β (°) 112.762 (1)
V3)1858.08 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.32 × 0.26 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.854, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
22063, 4674, 3424
Rint0.025
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.154, 1.01
No. of reflections4674
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.66

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.463.426 (2)168
C8—H8B···O2i0.972.533.495 (3)172
C21—H21···O1ii0.932.533.248 (3)134
C11—H11···Cg1iii0.932.733.568 (2)150
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x, y+1, z+1.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks UGC, India, for financial support.

References

First citationBruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPerumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds