organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(4-chloro­phen­yl)-3-[1-(4-meth­­oxy­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]-2-nitro-2,3,10,10a-tetra­hydro-1H,5H-pyr­rolo[1,2-b]iso­quinoline-10a-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600005, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 September 2008; accepted 25 September 2008; online 30 September 2008)

In the title compound, C37H34ClN3O6, the pyrrolidine and piperidine rings adopt envelope and boat conformations, respectively. The β-lactam ring is planar and forms dihedral angles of 21.3 (2) and 73.9 (2)°, respectively, with the attached methoxy­phenyl and phenyl rings. Intra­molecular C—H⋯O and C—H⋯N hydrogen bonds are observed. Centrosym­metrically related mol­ecules are linked together by weak C—H⋯O hydrogen bonds to form dimers.

Related literature

For the biological properties of β-lactam derivatives, see: Borthwick et al. (1998[Borthwick, A. D., Weingarte, G., Haley, T. M., Tomaszewski, M., Wang, W., Hu, Z., Bedard, J., Jin, H., Yuen, L. & Mansour, T. S. (1998). Bioorg. Med. Chem. Lett. 8, 365-370.]); Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]); Burnett (1994[Burnett, D. A. (1994). Tetrahedron Lett. 35, 7339-7342.]); Han et al. (1995[Han, W. T., Trehan, A. K., Wright, J. J. K., Federici, M. E., Seiler, S. M. & Meanwell, N. A. (1995). Bioorg. Med. Chem. Lett. 3, 1123-1143.]); Vaccaro & Davis (1998[Vaccaro, W. D. & Davis, H. R. Jr (1998). Bioorg. Med. Chem. Lett. 8, 313-318.]); Vaccaro et al. (1998[Vaccaro, W. D., Sher, R. & Davis, H. R. Jr (1998). Bioorg. Med. Chem. Lett. 8, 35-40.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C37H34ClN3O6

  • Mr = 652.12

  • Monoclinic, P 21 /n

  • a = 9.1723 (2) Å

  • b = 18.0452 (4) Å

  • c = 19.7475 (5) Å

  • β = 100.638 (1)°

  • V = 3212.35 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 (2) K

  • 0.22 × 0.20 × 0.17 mm

Data collection
  • Bruker kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.971

  • 30325 measured reflections

  • 5582 independent reflections

  • 3760 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.02

  • 5582 reflections

  • 426 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N27 0.97 2.53 3.196 (3) 126
C24—H24⋯O3 0.98 2.58 3.186 (3) 121
C25—H25⋯O6i 0.98 2.60 3.479 (3) 150
C35—H35⋯O5 0.93 2.60 3.157 (3) 119
C40—H40A⋯O4i 0.96 2.49 3.232 (4) 134
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

β-Lactams have been shown to exhibit high antibacterial activity. 1,3,4-Trisubstituted β-lactams are potent cholesterol absorption inhibitors (Vaccaro & Davis, 1998; Vaccaro et al., 1998; Burnett, 1994), human cylomegalonims and protease inhibitors (Borthwick et al., 1998) and thrombin inhibitors (Han et al., 1995). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporins (Brakhage, 1998). In view of these importance, the crystal structure determination of the title compound was carried out.

The pyrrolidine and piperidine rings in the molecule adopt envelope and boat conformations, respectively. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameter (Nardelli, 1983) for the pyrrolidine ring are q2 = 0.292 (3) Å, π = 99.6 (5)° and ΔS(C12) = 4.4 (3)°, and for the piperidine ring q2 = 0.630 (3) Å, q3 = 0.004 (3) Å, π = 61.2 (2)° and ΔS(C2) = ΔS(C9) = 1.2 (2)°. The ethylcarboxylate group adopts an extended conformation. The sum of angles at atom N27 of the β-lactam ring system [356.9°] is in accordance with sp2 hybridization. The β-lactam ring is planar and the keto O5 atom deviates from this plane by -0.005 (2) Å. The methoxyphenyl (C34—C39) and (C28—C33) phenyl rings form dihedral angles of 21.3 (2) and 73.9 (2)°, respectively, with the β-lactam ring. C—H···O and C—H···N types of intramolecular hydrogen bonds are observed.

In the crystal structure, atoms C25 and C40 of the molecule at (x, y, z) donate one proton each to atoms O6 and O4 of the molecule at (- x, 1 - y, -z), forming a cyclic centrosymmetric dimer.

Related literature top

For the biological properties of β-lactam derivatives, see: Borthwick et al. (1998); Brakhage (1998); Burnett (1994); Han et al. (1995); Vaccaro & Davis (1998); Vaccaro et al. (1998). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To a stirred solution of 5-[1'-N-(p-methoxyphenyl-azetidine-2'-one]-4-nitro-3-(p-chloro)-phenyl-2-ethoxycarbonyl-2-benzyl-pyrrlolidine (1 mmol) in dry chloroform (20 ml) para formaldehyde (1 mmol) and then trifluroacetic acid (0.1 mmol) were added at room temperature. After completion of the reaction, the mixture was washed with water and dried over. The solvent was removed under the reduced pressure and the crude product was subjected to column chromatography with hexane-ethyl acetate (9:1) to obtain pure cyclized product. The compound was recrystallized from ethyl acetate

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. Large thermal vibrations of atoms C15 and C16 resulted in the shortening of C15—C16 length.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 20% probability displacement ellipsoids and the atom-numbering scheme.
Ethyl 1-(4-chlorophenyl)-3-[1-(4-methoxyphenyl)-4-oxo-3- phenylazetidin-2-yl]-2-nitro-2,3,10,10a-tetrahydro-1H,5H- pyrrolo[1,2-b]isoquinoline-10a-carboxylate top
Crystal data top
C37H34ClN3O6F(000) = 1368
Mr = 652.12Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5002 reflections
a = 9.1723 (2) Åθ = 1.5–24.9°
b = 18.0452 (4) ŵ = 0.17 mm1
c = 19.7475 (5) ÅT = 293 K
β = 100.638 (1)°Block, colourless
V = 3212.35 (13) Å30.22 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker kappa APEXII area-detector
diffractometer
5582 independent reflections
Radiation source: fine-focus sealed tube3760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and ϕ scansθmax = 24.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.963, Tmax = 0.971k = 2021
30325 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0537P)2 + 1.5127P]
where P = (Fo2 + 2Fc2)/3
5582 reflections(Δ/σ)max = 0.001
426 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C37H34ClN3O6V = 3212.35 (13) Å3
Mr = 652.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1723 (2) ŵ = 0.17 mm1
b = 18.0452 (4) ÅT = 293 K
c = 19.7475 (5) Å0.22 × 0.20 × 0.17 mm
β = 100.638 (1)°
Data collection top
Bruker kappa APEXII area-detector
diffractometer
5582 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3760 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.034
30325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
5582 reflectionsΔρmin = 0.27 e Å3
426 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26960 (11)0.43479 (5)0.60642 (4)0.0979 (3)
O10.1144 (2)0.31964 (12)0.15686 (11)0.0870 (6)
O20.2380 (2)0.31467 (12)0.24445 (12)0.0914 (7)
O30.2459 (3)0.47487 (16)0.18822 (18)0.1215 (11)
O40.2416 (4)0.58070 (18)0.23474 (14)0.1523 (14)
O50.3329 (2)0.63293 (11)0.11354 (11)0.0839 (6)
O60.2021 (2)0.31726 (12)0.07279 (10)0.0823 (6)
N10.08498 (19)0.41518 (10)0.21858 (10)0.0468 (5)
C20.2354 (3)0.38685 (14)0.21800 (13)0.0556 (6)
H2A0.28910.42290.19570.067*
H2B0.22800.34160.19110.067*
C30.3207 (3)0.37143 (13)0.28843 (13)0.0537 (6)
C40.4641 (3)0.39488 (18)0.31274 (17)0.0771 (8)
H40.51370.42300.28470.093*
C50.5336 (3)0.3767 (2)0.3782 (2)0.0940 (10)
H50.62950.39340.39470.113*
C60.4625 (4)0.33415 (19)0.41941 (17)0.0836 (9)
H60.51130.32090.46330.100*
C70.3198 (3)0.31095 (14)0.39631 (14)0.0644 (7)
H70.27140.28240.42460.077*
C80.2481 (3)0.33003 (12)0.33104 (13)0.0499 (6)
C90.0928 (3)0.30842 (12)0.30105 (13)0.0547 (6)
H9A0.04410.29090.33770.066*
H9B0.09450.26780.26900.066*
C100.0017 (2)0.37342 (12)0.26295 (12)0.0487 (6)
C110.0500 (3)0.43205 (12)0.31170 (13)0.0513 (6)
H110.15450.42220.31320.062*
C120.0423 (3)0.50536 (13)0.27378 (13)0.0551 (6)
H120.01620.54570.30700.066*
C130.0807 (3)0.49450 (12)0.23229 (12)0.0479 (5)
H130.17470.50790.26210.058*
C140.1333 (3)0.33509 (15)0.22050 (16)0.0654 (7)
C150.2295 (5)0.2774 (2)0.1122 (2)0.1293 (16)
H15A0.18310.23950.08860.155*
H15B0.29110.25280.14030.155*
C160.3162 (5)0.3200 (3)0.0650 (2)0.163 (2)
H16A0.37040.35440.08800.245*
H16B0.38460.28910.03480.245*
H16C0.25540.34670.03870.245*
C170.0339 (3)0.43451 (12)0.38492 (13)0.0522 (6)
C180.0165 (3)0.39231 (14)0.43459 (14)0.0624 (7)
H180.10110.36340.42200.075*
C190.0560 (3)0.39233 (16)0.50219 (15)0.0717 (8)
H190.02070.36350.53480.086*
C200.1801 (3)0.43493 (16)0.52118 (14)0.0677 (8)
C210.2316 (3)0.47828 (15)0.47366 (15)0.0696 (7)
H210.31530.50770.48690.083*
C220.1586 (3)0.47789 (14)0.40612 (13)0.0610 (7)
H220.19380.50740.37400.073*
N230.1895 (3)0.52072 (17)0.22867 (14)0.0772 (8)
C240.0636 (3)0.54308 (12)0.16801 (12)0.0512 (6)
H240.03720.54120.14090.061*
C250.1223 (3)0.62490 (13)0.18009 (13)0.0559 (6)
H250.04960.65930.15460.067*
C260.2339 (3)0.60255 (14)0.13526 (13)0.0611 (7)
N270.1771 (2)0.53255 (11)0.12491 (10)0.0555 (5)
C280.1739 (3)0.65324 (12)0.25172 (13)0.0547 (6)
C290.3113 (3)0.63541 (14)0.28979 (16)0.0678 (7)
H290.37700.60730.26980.081*
C300.3525 (4)0.65882 (17)0.35720 (18)0.0828 (9)
H300.44480.64560.38230.099*
C310.2596 (4)0.70088 (18)0.38705 (18)0.0861 (9)
H310.28770.71630.43250.103*
C320.1253 (4)0.72025 (16)0.35001 (18)0.0813 (9)
H320.06160.74940.37030.098*
C330.0822 (3)0.69735 (14)0.28273 (16)0.0665 (7)
H330.00970.71180.25790.080*
C340.1861 (3)0.47852 (13)0.07403 (12)0.0533 (6)
C350.3076 (3)0.47553 (16)0.04257 (15)0.0700 (8)
H350.38430.50940.05470.084*
C360.3168 (3)0.42258 (16)0.00697 (15)0.0725 (8)
H360.39910.42130.02830.087*
C370.2053 (3)0.37216 (15)0.02476 (13)0.0596 (6)
C380.0838 (3)0.37514 (15)0.00705 (13)0.0612 (7)
H380.00730.34110.00500.073*
C390.0741 (3)0.42744 (14)0.05597 (13)0.0573 (6)
H390.00840.42860.07720.069*
C400.3268 (3)0.30843 (19)0.10496 (16)0.0824 (9)
H40A0.34770.35450.12560.124*
H40B0.30620.27100.13990.124*
H40C0.41120.29390.07120.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1261 (7)0.1070 (6)0.0593 (5)0.0466 (5)0.0135 (5)0.0010 (4)
O10.0823 (14)0.1021 (16)0.0680 (14)0.0362 (12)0.0090 (11)0.0012 (11)
O20.0641 (13)0.0896 (15)0.1228 (19)0.0263 (11)0.0235 (12)0.0104 (13)
O30.0639 (15)0.0989 (19)0.183 (3)0.0030 (13)0.0253 (17)0.0309 (19)
O40.183 (3)0.162 (3)0.107 (2)0.128 (2)0.0138 (19)0.0210 (18)
O50.0955 (15)0.0691 (12)0.0985 (16)0.0293 (11)0.0479 (13)0.0002 (11)
O60.0805 (13)0.0942 (15)0.0781 (14)0.0059 (11)0.0301 (11)0.0264 (11)
N10.0446 (11)0.0440 (10)0.0542 (12)0.0015 (8)0.0153 (9)0.0028 (8)
C20.0516 (14)0.0588 (14)0.0607 (16)0.0085 (11)0.0215 (12)0.0004 (12)
C30.0449 (14)0.0546 (14)0.0628 (16)0.0097 (11)0.0132 (12)0.0047 (12)
C40.0477 (16)0.090 (2)0.096 (2)0.0049 (14)0.0180 (16)0.0048 (17)
C50.0507 (18)0.113 (3)0.109 (3)0.0087 (18)0.0078 (19)0.001 (2)
C60.075 (2)0.094 (2)0.073 (2)0.0268 (18)0.0099 (17)0.0029 (18)
C70.0673 (18)0.0575 (15)0.0676 (18)0.0192 (13)0.0107 (14)0.0045 (13)
C80.0523 (14)0.0401 (12)0.0574 (15)0.0105 (10)0.0102 (12)0.0025 (11)
C90.0590 (15)0.0438 (13)0.0624 (16)0.0010 (11)0.0135 (12)0.0045 (11)
C100.0460 (13)0.0449 (12)0.0570 (15)0.0022 (10)0.0147 (11)0.0061 (10)
C110.0448 (13)0.0510 (13)0.0624 (16)0.0063 (10)0.0210 (12)0.0128 (11)
C120.0566 (15)0.0506 (13)0.0628 (16)0.0099 (11)0.0235 (12)0.0121 (11)
C130.0506 (13)0.0434 (12)0.0524 (14)0.0012 (10)0.0165 (11)0.0047 (10)
C140.0532 (16)0.0605 (16)0.080 (2)0.0077 (12)0.0061 (14)0.0148 (14)
C150.116 (3)0.118 (3)0.126 (3)0.056 (3)0.049 (3)0.015 (3)
C160.147 (4)0.197 (5)0.117 (4)0.089 (4)0.054 (3)0.056 (4)
C170.0563 (15)0.0456 (13)0.0607 (16)0.0136 (11)0.0268 (12)0.0062 (11)
C180.0636 (16)0.0617 (16)0.0685 (18)0.0128 (12)0.0291 (14)0.0159 (13)
C190.085 (2)0.0726 (18)0.0664 (19)0.0274 (16)0.0365 (17)0.0206 (15)
C200.084 (2)0.0662 (17)0.0564 (17)0.0298 (16)0.0217 (15)0.0001 (14)
C210.081 (2)0.0640 (17)0.0662 (19)0.0074 (14)0.0208 (16)0.0104 (14)
C220.0775 (18)0.0541 (15)0.0570 (17)0.0032 (13)0.0275 (14)0.0006 (12)
N230.0689 (17)0.0873 (19)0.0842 (19)0.0343 (15)0.0372 (15)0.0408 (15)
C240.0510 (14)0.0512 (13)0.0535 (14)0.0018 (10)0.0155 (11)0.0061 (11)
C250.0631 (16)0.0464 (13)0.0597 (16)0.0005 (11)0.0150 (13)0.0100 (11)
C260.0712 (17)0.0539 (15)0.0612 (16)0.0088 (13)0.0204 (14)0.0096 (12)
N270.0630 (13)0.0520 (12)0.0564 (13)0.0118 (9)0.0240 (10)0.0015 (9)
C280.0599 (16)0.0421 (13)0.0632 (16)0.0049 (11)0.0139 (13)0.0076 (11)
C290.0655 (18)0.0538 (15)0.084 (2)0.0015 (13)0.0131 (16)0.0007 (14)
C300.078 (2)0.0727 (19)0.089 (2)0.0049 (16)0.0078 (18)0.0006 (17)
C310.103 (3)0.075 (2)0.077 (2)0.0136 (19)0.006 (2)0.0069 (17)
C320.098 (2)0.0653 (18)0.089 (2)0.0054 (17)0.037 (2)0.0132 (16)
C330.0673 (17)0.0526 (15)0.082 (2)0.0022 (13)0.0190 (15)0.0036 (14)
C340.0600 (15)0.0546 (14)0.0485 (14)0.0056 (11)0.0181 (12)0.0076 (11)
C350.0649 (17)0.0724 (18)0.079 (2)0.0210 (14)0.0286 (15)0.0059 (15)
C360.0656 (18)0.082 (2)0.079 (2)0.0086 (15)0.0366 (15)0.0050 (16)
C370.0623 (16)0.0672 (16)0.0516 (15)0.0007 (13)0.0166 (13)0.0013 (12)
C380.0623 (16)0.0690 (16)0.0545 (15)0.0145 (13)0.0163 (13)0.0038 (13)
C390.0551 (15)0.0685 (16)0.0522 (15)0.0111 (12)0.0203 (12)0.0007 (12)
C400.079 (2)0.099 (2)0.0722 (19)0.0267 (17)0.0224 (16)0.0084 (17)
Geometric parameters (Å, º) top
Cl1—C201.731 (3)C16—H16C0.96
O1—C141.329 (3)C17—C221.385 (4)
O1—C151.460 (4)C17—C181.387 (3)
O2—C141.204 (3)C18—C191.377 (4)
O3—N231.199 (4)C18—H180.93
O4—N231.198 (3)C19—C201.368 (4)
O5—C261.205 (3)C19—H190.93
O6—C371.368 (3)C20—C211.371 (4)
O6—C401.416 (3)C21—C221.378 (4)
N1—C131.459 (3)C21—H210.93
N1—C101.472 (3)C22—H220.93
N1—C21.473 (3)C24—N271.474 (3)
C2—C31.491 (3)C24—C251.575 (3)
C2—H2A0.97C24—H240.98
C2—H2B0.97C25—C281.496 (3)
C3—C41.381 (4)C25—C261.526 (4)
C3—C81.384 (3)C25—H250.98
C4—C51.372 (4)C26—N271.367 (3)
C4—H40.93N27—C341.413 (3)
C5—C61.368 (5)C28—C331.381 (4)
C5—H50.93C28—C291.381 (4)
C6—C71.370 (4)C29—C301.381 (4)
C6—H60.93C29—H290.93
C7—C81.378 (3)C30—C311.354 (5)
C7—H70.93C30—H300.93
C8—C91.490 (3)C31—C321.357 (4)
C9—C101.552 (3)C31—H310.93
C9—H9A0.97C32—C331.378 (4)
C9—H9B0.97C32—H320.93
C10—C141.527 (4)C33—H330.93
C10—C111.562 (3)C34—C351.374 (3)
C11—C171.508 (3)C34—C391.377 (3)
C11—C121.528 (3)C35—C361.381 (4)
C11—H110.98C35—H350.93
C12—N231.500 (4)C36—C371.365 (4)
C12—C131.524 (3)C36—H360.93
C12—H120.98C37—C381.378 (3)
C13—C241.527 (3)C38—C391.365 (3)
C13—H130.98C38—H380.93
C15—C161.347 (5)C39—H390.93
C15—H15A0.97C40—H40A0.96
C15—H15B0.97C40—H40B0.96
C16—H16A0.96C40—H40C0.96
C16—H16B0.96
C14—O1—C15118.3 (3)C19—C18—H18119.3
C37—O6—C40118.5 (2)C17—C18—H18119.3
C13—N1—C10110.93 (17)C20—C19—C18119.6 (3)
C13—N1—C2113.53 (18)C20—C19—H19120.2
C10—N1—C2114.62 (17)C18—C19—H19120.2
N1—C2—C3112.88 (19)C19—C20—C21120.5 (3)
N1—C2—H2A109.0C19—C20—Cl1119.1 (2)
C3—C2—H2A109.0C21—C20—Cl1120.3 (3)
N1—C2—H2B109.0C20—C21—C22119.5 (3)
C3—C2—H2B109.0C20—C21—H21120.3
H2A—C2—H2B107.8C22—C21—H21120.3
C4—C3—C8119.2 (3)C21—C22—C17121.5 (2)
C4—C3—C2124.7 (2)C21—C22—H22119.3
C8—C3—C2116.0 (2)C17—C22—H22119.3
C5—C4—C3120.1 (3)O4—N23—O3124.0 (3)
C5—C4—H4120.0O4—N23—C12116.1 (3)
C3—C4—H4120.0O3—N23—C12119.9 (2)
C6—C5—C4120.3 (3)N27—C24—C13115.53 (19)
C6—C5—H5119.8N27—C24—C2587.13 (16)
C4—C5—H5119.8C13—C24—C25115.6 (2)
C5—C6—C7120.3 (3)N27—C24—H24112.1
C5—C6—H6119.8C13—C24—H24112.1
C7—C6—H6119.8C25—C24—H24112.1
C6—C7—C8119.8 (3)C28—C25—C26120.7 (2)
C6—C7—H7120.1C28—C25—C24120.22 (19)
C8—C7—H7120.1C26—C25—C2484.93 (18)
C7—C8—C3120.2 (2)C28—C25—H25109.6
C7—C8—C9124.2 (2)C26—C25—H25109.6
C3—C8—C9115.6 (2)C24—C25—H25109.6
C8—C9—C10112.61 (18)O5—C26—N27131.2 (3)
C8—C9—H9A109.1O5—C26—C25135.7 (2)
C10—C9—H9A109.1N27—C26—C2593.04 (19)
C8—C9—H9B109.1C26—N27—C34132.3 (2)
C10—C9—H9B109.1C26—N27—C2494.87 (18)
H9A—C9—H9B107.8C34—N27—C24129.76 (19)
N1—C10—C14111.3 (2)C33—C28—C29117.6 (3)
N1—C10—C9112.56 (18)C33—C28—C25120.3 (2)
C14—C10—C9103.48 (18)C29—C28—C25122.2 (2)
N1—C10—C11105.68 (17)C30—C29—C28120.8 (3)
C14—C10—C11109.7 (2)C30—C29—H29119.6
C9—C10—C11114.24 (19)C28—C29—H29119.6
C17—C11—C12112.5 (2)C31—C30—C29120.6 (3)
C17—C11—C10116.85 (18)C31—C30—H30119.7
C12—C11—C10103.73 (18)C29—C30—H30119.7
C17—C11—H11107.8C30—C31—C32119.4 (3)
C12—C11—H11107.8C30—C31—H31120.3
C10—C11—H11107.8C32—C31—H31120.3
N23—C12—C13112.3 (2)C31—C32—C33120.9 (3)
N23—C12—C11109.4 (2)C31—C32—H32119.6
C13—C12—C11104.96 (18)C33—C32—H32119.6
N23—C12—H12110.0C32—C33—C28120.7 (3)
C13—C12—H12110.0C32—C33—H33119.7
C11—C12—H12110.0C28—C33—H33119.7
N1—C13—C12105.89 (17)C35—C34—C39119.0 (2)
N1—C13—C24114.29 (19)C35—C34—N27120.5 (2)
C12—C13—C24113.61 (18)C39—C34—N27120.5 (2)
N1—C13—H13107.6C34—C35—C36120.5 (2)
C12—C13—H13107.6C34—C35—H35119.7
C24—C13—H13107.6C36—C35—H35119.7
O2—C14—O1124.0 (3)C37—C36—C35120.2 (2)
O2—C14—C10123.2 (3)C37—C36—H36119.9
O1—C14—C10112.3 (2)C35—C36—H36119.9
C16—C15—O1112.9 (3)C36—C37—O6125.5 (2)
C16—C15—H15A109.0C36—C37—C38119.1 (2)
O1—C15—H15A109.0O6—C37—C38115.4 (2)
C16—C15—H15B109.0C39—C38—C37120.9 (2)
O1—C15—H15B109.0C39—C38—H38119.6
H15A—C15—H15B107.8C37—C38—H38119.6
C15—C16—H16A109.5C38—C39—C34120.2 (2)
C15—C16—H16B109.5C38—C39—H39119.9
H16A—C16—H16B109.5C34—C39—H39119.9
C15—C16—H16C109.5O6—C40—H40A109.5
H16A—C16—H16C109.5O6—C40—H40B109.5
H16B—C16—H16C109.5H40A—C40—H40B109.5
C22—C17—C18117.5 (2)O6—C40—H40C109.5
C22—C17—C11123.6 (2)H40A—C40—H40C109.5
C18—C17—C11119.0 (2)H40B—C40—H40C109.5
C19—C18—C17121.4 (3)
C13—N1—C2—C382.0 (2)C18—C19—C20—C210.9 (4)
C10—N1—C2—C346.9 (3)C18—C19—C20—Cl1179.67 (19)
N1—C2—C3—C4131.6 (3)C19—C20—C21—C220.9 (4)
N1—C2—C3—C848.9 (3)Cl1—C20—C21—C22179.73 (19)
C8—C3—C4—C50.5 (4)C20—C21—C22—C170.1 (4)
C2—C3—C4—C5179.0 (3)C18—C17—C22—C211.1 (3)
C3—C4—C5—C61.2 (5)C11—C17—C22—C21180.0 (2)
C4—C5—C6—C71.8 (5)C13—C12—N23—O4115.0 (3)
C5—C6—C7—C80.6 (4)C11—C12—N23—O4128.8 (3)
C6—C7—C8—C31.1 (4)C13—C12—N23—O363.0 (3)
C6—C7—C8—C9179.4 (2)C11—C12—N23—O353.2 (3)
C4—C3—C8—C71.6 (3)N1—C13—C24—N2756.2 (3)
C2—C3—C8—C7177.9 (2)C12—C13—C24—N27177.9 (2)
C4—C3—C8—C9178.8 (2)N1—C13—C24—C25155.91 (19)
C2—C3—C8—C91.6 (3)C12—C13—C24—C2582.4 (3)
C7—C8—C9—C10135.8 (2)N27—C24—C25—C28123.9 (2)
C3—C8—C9—C1044.7 (3)C13—C24—C25—C286.9 (3)
C13—N1—C10—C14115.2 (2)N27—C24—C25—C261.17 (17)
C2—N1—C10—C14114.6 (2)C13—C24—C25—C26115.9 (2)
C13—N1—C10—C9129.2 (2)C28—C25—C26—O558.7 (4)
C2—N1—C10—C91.0 (3)C24—C25—C26—O5179.0 (3)
C13—N1—C10—C113.9 (2)C28—C25—C26—N27123.6 (2)
C2—N1—C10—C11126.3 (2)C24—C25—C26—N271.27 (19)
C8—C9—C10—N144.5 (3)O5—C26—N27—C3418.2 (5)
C8—C9—C10—C14164.7 (2)C25—C26—N27—C34159.6 (3)
C8—C9—C10—C1176.0 (2)O5—C26—N27—C24179.2 (3)
N1—C10—C11—C17103.8 (2)C25—C26—N27—C241.4 (2)
C14—C10—C11—C17136.2 (2)C13—C24—N27—C26115.8 (2)
C9—C10—C11—C1720.5 (3)C25—C24—N27—C261.31 (19)
N1—C10—C11—C1220.6 (2)C13—C24—N27—C3482.5 (3)
C14—C10—C11—C1299.4 (2)C25—C24—N27—C34160.4 (2)
C9—C10—C11—C12144.93 (19)C26—C25—C28—C33156.5 (2)
C17—C11—C12—N23141.4 (2)C24—C25—C28—C33100.4 (3)
C10—C11—C12—N2391.4 (2)C26—C25—C28—C2925.0 (3)
C17—C11—C12—C1397.9 (2)C24—C25—C28—C2978.0 (3)
C10—C11—C12—C1329.3 (2)C33—C28—C29—C302.3 (4)
C10—N1—C13—C1214.7 (2)C25—C28—C29—C30176.2 (2)
C2—N1—C13—C12145.46 (19)C28—C29—C30—C311.1 (5)
C10—N1—C13—C24140.51 (19)C29—C30—C31—C320.3 (5)
C2—N1—C13—C2488.7 (2)C30—C31—C32—C330.4 (5)
N23—C12—C13—N191.3 (2)C31—C32—C33—C280.9 (4)
C11—C12—C13—N127.5 (2)C29—C28—C33—C322.2 (4)
N23—C12—C13—C2435.0 (3)C25—C28—C33—C32176.3 (2)
C11—C12—C13—C24153.8 (2)C26—N27—C34—C3529.3 (4)
C15—O1—C14—O22.1 (4)C24—N27—C34—C35175.7 (2)
C15—O1—C14—C10175.0 (3)C26—N27—C34—C39151.7 (3)
N1—C10—C14—O2159.7 (2)C24—N27—C34—C393.3 (4)
C9—C10—C14—O279.2 (3)C39—C34—C35—C360.7 (4)
C11—C10—C14—O243.1 (3)N27—C34—C35—C36179.7 (3)
N1—C10—C14—O127.3 (3)C34—C35—C36—C370.6 (5)
C9—C10—C14—O193.8 (2)C35—C36—C37—O6179.9 (3)
C11—C10—C14—O1143.9 (2)C35—C36—C37—C380.3 (4)
C14—O1—C15—C16103.2 (5)C40—O6—C37—C363.4 (4)
C12—C11—C17—C2230.5 (3)C40—O6—C37—C38176.7 (2)
C10—C11—C17—C2289.3 (3)C36—C37—C38—C390.2 (4)
C12—C11—C17—C18148.4 (2)O6—C37—C38—C39179.9 (2)
C10—C11—C17—C1891.8 (2)C37—C38—C39—C340.4 (4)
C22—C17—C18—C191.2 (3)C35—C34—C39—C380.6 (4)
C11—C17—C18—C19179.8 (2)N27—C34—C39—C38179.6 (2)
C17—C18—C19—C200.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N270.972.533.196 (3)126
C24—H24···O30.982.583.186 (3)121
C25—H25···O6i0.982.603.479 (3)150
C35—H35···O50.932.603.157 (3)119
C40—H40A···O4i0.962.493.232 (4)134
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC37H34ClN3O6
Mr652.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.1723 (2), 18.0452 (4), 19.7475 (5)
β (°) 100.638 (1)
V3)3212.35 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.22 × 0.20 × 0.17
Data collection
DiffractometerBruker kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
30325, 5582, 3760
Rint0.034
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.03
No. of reflections5582
No. of parameters426
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N270.972.533.196 (3)126
C24—H24···O30.982.583.186 (3)121
C25—H25···O6i0.982.603.479 (3)150
C35—H35···O50.932.603.157 (3)119
C40—H40A···O4i0.962.493.232 (4)134
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

SS thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his help with the data collection.

References

First citationBorthwick, A. D., Weingarte, G., Haley, T. M., Tomaszewski, M., Wang, W., Hu, Z., Bedard, J., Jin, H., Yuen, L. & Mansour, T. S. (1998). Bioorg. Med. Chem. Lett. 8, 365–370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547–585.  Web of Science CAS PubMed Google Scholar
First citationBruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, D. A. (1994). Tetrahedron Lett. 35, 7339–7342.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHan, W. T., Trehan, A. K., Wright, J. J. K., Federici, M. E., Seiler, S. M. & Meanwell, N. A. (1995). Bioorg. Med. Chem. Lett. 3, 1123–1143.  CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaccaro, W. D. & Davis, H. R. Jr (1998). Bioorg. Med. Chem. Lett. 8, 313–318.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVaccaro, W. D., Sher, R. & Davis, H. R. Jr (1998). Bioorg. Med. Chem. Lett. 8, 35–40.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds