organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-N′-(2-hydr­­oxy-3-meth­oxy­benzyl­­idene)benzohydrazide mono­hydrate

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 19 September 2008; accepted 25 September 2008; online 27 September 2008)

In the title compound, C15H14N2O4·H2O, the dihedral angle between the two aromatic rings is 33.3 (5)°. The meth­oxy group is twisted slightly away from the attached benzene ring [C—O—C—C = 13.8 (9)°]. An intra­molecular O—H⋯N hydrogen bond is observed. In the crystal structure, the mol­ecules are linked into a two-dimensional network parallel to the (010) plane by inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds

Related literature

For related structures, see: Lu et al. (2008a[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.],b[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.],c[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]); He (2008[He, L. (2008). Acta Cryst. E64, o82.]); Shi et al. (2007[Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295-o1296.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4·H2O

  • Mr = 304.30

  • Monoclinic, P n

  • a = 4.891 (2) Å

  • b = 12.171 (5) Å

  • c = 12.371 (5) Å

  • β = 95.724 (7)°

  • V = 732.8 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.08 × 0.07 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.992, Tmax = 0.993

  • 5972 measured reflections

  • 1582 independent reflections

  • 791 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.119

  • S = 0.92

  • 1582 reflections

  • 211 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.99 2.687 (5) 142
N2—H2⋯O5i 0.90 (3) 1.99 (3) 2.820 (5) 154 (5)
O4—H4⋯O2ii 0.82 2.15 2.872 (7) 147
O5—H5A⋯O3iii 0.86 (3) 1.97 (3) 2.769 (6) 156 (6)
O5—H5B⋯O3iv 0.84 (4) 2.01 (3) 2.769 (6) 148 (5)
C7—H7⋯O5i 0.93 2.48 3.229 (7) 138
C14—H14⋯O5i 0.93 2.34 3.218 (7) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}]; (ii) [x-{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) x+1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigation of the crystal structures of Schiff bases derived from the condensation of aldehydes with benzohydrazides (Lu et al., 2008a,b,c), we report here the crystal structure of the title new Schiff base compound.

The asymmetric unit of the title compound (Fig. 1), consists of a Schiff base molecule and a water molecule of crystallization. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Nie, 2008; He, 2008; Shi et al., 2007). The dihedral angle between the two aromatic rings is 33.3 (5)°, indicating that the Schiff base molecule is twisted. An intramolecular O—H···N hydrogen bond is observed.

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the (010) by intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1).

Related literature top

For related structures, see: Lu et al. (2008a,b,c); Nie (2008); He (2008); Shi et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the Schiff base condensation of 2-hydroxy-3-methoxybenzaldehyde (0.1 mol) and 4-hydroxybenzohydrazide (0.1 mmol) in 95% ethanol (50 ml). The excess ethanol was removed by distillation. The colourless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obatined by slow evaporation of a 95% ethanol solution at room temperature.

Refinement top

The imino and water H atoms were located in a difference map and refined with N-H, O-H and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. The other H atoms were positioned geometrically (C-H = 0.93-0.96 Å and O-H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl and O). A rotating group model was used for methyl and hydroxyl groups. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-Hydroxy-N'-(2-hydroxy-3-methoxybenzylidene)benzohydrazide monohydrate top
Crystal data top
C15H14N2O4·H2OF(000) = 320
Mr = 304.30Dx = 1.379 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 623 reflections
a = 4.891 (2) Åθ = 2.3–24.0°
b = 12.171 (5) ŵ = 0.11 mm1
c = 12.371 (5) ÅT = 298 K
β = 95.724 (7)°Block, colourless
V = 732.8 (5) Å30.08 × 0.07 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1582 independent reflections
Radiation source: fine-focus sealed tube791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 66
Tmin = 0.992, Tmax = 0.993k = 1515
5972 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
1582 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.14 e Å3
6 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H14N2O4·H2OV = 732.8 (5) Å3
Mr = 304.30Z = 2
Monoclinic, PnMo Kα radiation
a = 4.891 (2) ŵ = 0.11 mm1
b = 12.171 (5) ÅT = 298 K
c = 12.371 (5) Å0.08 × 0.07 × 0.07 mm
β = 95.724 (7)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1582 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
791 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 0.993Rint = 0.086
5972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0516 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.14 e Å3
1582 reflectionsΔρmin = 0.15 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2886 (8)0.7446 (3)0.9901 (3)0.0588 (11)
H10.21670.80480.97820.088*
O20.6029 (9)0.5752 (3)1.0195 (4)0.0747 (13)
O30.1590 (7)1.0380 (3)0.9939 (3)0.0564 (10)
O40.9973 (10)1.3626 (4)0.7359 (3)0.0823 (15)
H41.01971.36190.66940.123*
O50.3665 (9)1.0067 (4)0.0948 (3)0.0717 (13)
N10.1007 (8)0.9097 (3)0.8590 (3)0.0460 (11)
N20.0723 (9)0.9954 (4)0.8239 (3)0.0454 (11)
C10.4174 (11)0.7745 (4)0.8075 (5)0.0494 (14)
C20.4327 (11)0.7168 (4)0.9064 (5)0.0463 (14)
C30.6063 (12)0.6245 (5)0.9194 (5)0.0579 (17)
C40.7584 (13)0.5927 (5)0.8385 (6)0.072 (2)
H4A0.87320.53190.84840.087*
C50.7435 (13)0.6500 (6)0.7418 (6)0.073 (2)
H50.84840.62790.68700.088*
C60.5746 (12)0.7393 (5)0.7267 (5)0.0594 (16)
H60.56470.77710.66110.071*
C70.2392 (11)0.8680 (4)0.7868 (4)0.0485 (14)
H70.22430.89930.71800.058*
C80.2022 (10)1.0526 (4)0.8945 (5)0.0421 (13)
C90.4033 (10)1.1358 (4)0.8497 (4)0.0410 (13)
C100.5053 (12)1.2129 (5)0.9167 (5)0.0589 (16)
H100.43891.21380.98980.071*
C110.6996 (13)1.2877 (5)0.8800 (5)0.0694 (19)
H110.76501.33810.92770.083*
C120.7996 (11)1.2885 (5)0.7710 (5)0.0558 (16)
C130.7035 (13)1.2128 (5)0.7021 (5)0.0655 (18)
H130.76981.21250.62890.079*
C140.5079 (11)1.1370 (5)0.7412 (4)0.0549 (16)
H140.44501.08570.69380.066*
C150.8230 (15)0.4970 (7)1.0500 (8)0.107 (3)
H15A0.79830.43291.00480.160*
H15B0.81850.47631.12460.160*
H15C0.99700.53021.04050.160*
H20.076 (13)1.017 (5)0.7543 (17)0.080*
H5A0.211 (5)0.997 (5)0.058 (4)0.080*
H5B0.490 (7)0.992 (5)0.054 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.063 (3)0.055 (2)0.057 (2)0.014 (2)0.001 (2)0.002 (2)
O20.071 (3)0.059 (2)0.090 (3)0.024 (2)0.013 (3)0.007 (2)
O30.056 (3)0.081 (3)0.032 (2)0.017 (2)0.0050 (18)0.007 (2)
O40.090 (4)0.068 (3)0.086 (3)0.044 (3)0.002 (3)0.005 (2)
O50.054 (3)0.122 (4)0.038 (2)0.011 (3)0.003 (2)0.005 (2)
N10.042 (3)0.043 (3)0.051 (3)0.004 (2)0.004 (2)0.003 (2)
N20.048 (3)0.050 (3)0.039 (3)0.009 (2)0.007 (2)0.002 (2)
C10.043 (3)0.046 (3)0.057 (4)0.004 (3)0.004 (3)0.022 (3)
C20.041 (4)0.046 (3)0.050 (3)0.001 (3)0.001 (3)0.014 (3)
C30.047 (4)0.047 (3)0.076 (5)0.010 (3)0.012 (4)0.010 (3)
C40.056 (5)0.063 (4)0.097 (6)0.025 (4)0.001 (4)0.027 (4)
C50.052 (4)0.076 (5)0.091 (6)0.011 (4)0.011 (4)0.035 (4)
C60.048 (3)0.065 (4)0.064 (4)0.001 (3)0.000 (3)0.017 (3)
C70.050 (4)0.055 (4)0.041 (3)0.003 (3)0.001 (3)0.009 (3)
C80.034 (3)0.042 (3)0.051 (4)0.001 (3)0.003 (3)0.005 (3)
C90.041 (3)0.040 (3)0.042 (3)0.003 (3)0.002 (3)0.002 (2)
C100.065 (4)0.068 (4)0.043 (3)0.009 (4)0.001 (3)0.007 (3)
C110.078 (5)0.070 (4)0.059 (5)0.037 (4)0.008 (4)0.014 (3)
C120.052 (4)0.049 (3)0.064 (4)0.017 (3)0.004 (3)0.001 (3)
C130.076 (5)0.072 (4)0.047 (4)0.023 (4)0.003 (3)0.004 (3)
C140.057 (4)0.063 (4)0.044 (3)0.025 (3)0.001 (3)0.007 (3)
C150.066 (5)0.088 (5)0.160 (8)0.039 (4)0.015 (5)0.028 (5)
Geometric parameters (Å, º) top
O1—C21.352 (6)C4—H4A0.93
O1—H10.82C5—C61.367 (8)
O2—C31.377 (7)C5—H50.93
O2—C151.459 (7)C6—H60.93
O3—C81.240 (6)C7—H70.93
O4—C121.361 (6)C8—C91.480 (7)
O4—H40.82C9—C101.378 (7)
O5—H5A0.86 (3)C9—C141.388 (6)
O5—H5B0.84 (4)C10—C111.361 (7)
N1—C71.279 (6)C10—H100.93
N1—N21.385 (6)C11—C121.388 (8)
N2—C81.328 (6)C11—H110.93
N2—H20.90 (3)C12—C131.369 (7)
C1—C61.388 (7)C13—C141.381 (7)
C1—C21.407 (7)C13—H130.93
C1—C71.440 (7)C14—H140.93
C2—C31.407 (7)C15—H15A0.96
C3—C41.362 (8)C15—H15B0.96
C4—C51.379 (8)C15—H15C0.96
C2—O1—H1109.5C1—C7—H7118.5
C3—O2—C15116.3 (5)O3—C8—N2122.1 (5)
C12—O4—H4109.5O3—C8—C9120.7 (5)
H5A—O5—H5B108 (3)N2—C8—C9117.1 (5)
C7—N1—N2115.5 (4)C10—C9—C14117.0 (5)
C8—N2—N1120.4 (4)C10—C9—C8120.5 (5)
C8—N2—H2121 (4)C14—C9—C8122.5 (5)
N1—N2—H2118 (4)C11—C10—C9122.5 (5)
C6—C1—C2119.2 (5)C11—C10—H10118.8
C6—C1—C7119.0 (6)C9—C10—H10118.8
C2—C1—C7121.8 (5)C10—C11—C12119.7 (5)
O1—C2—C3117.8 (5)C10—C11—H11120.2
O1—C2—C1123.7 (5)C12—C11—H11120.2
C3—C2—C1118.5 (5)O4—C12—C13121.6 (5)
C4—C3—O2126.4 (6)O4—C12—C11119.0 (5)
C4—C3—C2120.7 (6)C13—C12—C11119.4 (5)
O2—C3—C2112.9 (5)C12—C13—C14120.0 (6)
C3—C4—C5120.5 (6)C12—C13—H13120.0
C3—C4—H4A119.7C14—C13—H13120.0
C5—C4—H4A119.7C13—C14—C9121.5 (5)
C6—C5—C4120.0 (6)C13—C14—H14119.3
C6—C5—H5120.0C9—C14—H14119.3
C4—C5—H5120.0O2—C15—H15A109.5
C5—C6—C1121.1 (6)O2—C15—H15B109.5
C5—C6—H6119.4H15A—C15—H15B109.5
C1—C6—H6119.4O2—C15—H15C109.5
N1—C7—C1122.9 (5)H15A—C15—H15C109.5
N1—C7—H7118.5H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.992.687 (5)142
N2—H2···O5i0.90 (3)1.99 (3)2.820 (5)154 (5)
O4—H4···O2ii0.822.152.872 (7)147
O5—H5A···O3iii0.86 (3)1.97 (3)2.769 (6)156 (6)
O5—H5B···O3iv0.84 (4)2.01 (3)2.769 (6)148 (5)
C7—H7···O5i0.932.483.229 (7)138
C14—H14···O5i0.932.343.218 (7)158
Symmetry codes: (i) x1/2, y+2, z+1/2; (ii) x3/2, y+2, z1/2; (iii) x, y, z1; (iv) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC15H14N2O4·H2O
Mr304.30
Crystal system, space groupMonoclinic, Pn
Temperature (K)298
a, b, c (Å)4.891 (2), 12.171 (5), 12.371 (5)
β (°) 95.724 (7)
V3)732.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.08 × 0.07 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.992, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5972, 1582, 791
Rint0.086
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.119, 0.92
No. of reflections1582
No. of parameters211
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.992.687 (5)142
N2—H2···O5i0.90 (3)1.99 (3)2.820 (5)154 (5)
O4—H4···O2ii0.822.152.872 (7)147
O5—H5A···O3iii0.86 (3)1.97 (3)2.769 (6)156 (6)
O5—H5B···O3iv0.84 (4)2.01 (3)2.769 (6)148 (5)
C7—H7···O5i0.932.483.229 (7)138
C14—H14···O5i0.932.343.218 (7)158
Symmetry codes: (i) x1/2, y+2, z+1/2; (ii) x3/2, y+2, z1/2; (iii) x, y, z1; (iv) x+1, y, z1.
 

Acknowledgements

The author thanks the Scientific Research Foundation of Shaanxi University of Technology for financial support (project No. SLGQD0708).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, L. (2008). Acta Cryst. E64, o82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds