metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-sulfato-bis­­{[bis­­(3,5-di­methyl­pyrazol-1-yl)methane]copper(II)}

aJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: jxstnu116@yahoo.cn

(Received 29 June 2008; accepted 30 August 2008; online 6 September 2008)

The mol­ecule of the title compound, [Cu2(SO4)2(C11H16N4)2], sits on a center of symmetry. The CuII atom has a distorted trigonal–bipyramidal coordination geometry comprising three O atoms of the two symmetry-related SO42− anions and two N atoms from one bis­(3,5-dimethyl­pyrazol-1-yl)methane ligand.

Related literature

For related literature, see: Arnold et al. (2001[Arnold, P. J., Davies, S. C., Dilworth, J. R., Durrant, M. C., Griffiths, D. V., Hughes, D. L., Richards, R. L. & Sharpe, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 736-746.]); Dhar et al. (2004[Dhar, S., Nethaji, M. & Chakravarty, A. R. (2004). J. Chem. Soc. Dalton Trans. pp. 4180-4184.]); Endres et al. (1984[Endres, H., Noethe, D., Rossato, E. & Hatfield, W. E. (1984). Inorg. Chem. 23, 3467-3473.]); Hatzidimitriou et al. (2006[Hatzidimitriou, A. G., Kapnisti, M. & Voutsas, G. (2006). Z. Kristallogr. New Cryst. Struct. 221, 532-534.]); He & Han (2006[He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2676-m2677.]); Springsteen et al. (2006[Springsteen, C. H., Sweeder, R. D. & LaDuca, R. L. (2006). Cryst. Growth Des. 6, 2308-2314.]); Tamasi & Cini (2003[Tamasi, G. & Cini, R. (2003). J. Chem. Soc. Dalton Trans. pp. 2928-2936.]); Thompson et al. (1998[Thompson, L. K., Xu, Z. Q., Goeta, A. E., Howard, J. A. K., Clase, H. J. & Miller, D. O. (1998). Inorg. Chem. 37, 3217-3229.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(SO4)2(C11H16N4)2]

  • Mr = 727.76

  • Monoclinic, P 21 /n

  • a = 7.5293 (15) Å

  • b = 10.734 (2) Å

  • c = 17.740 (4) Å

  • β = 99.73 (3)°

  • V = 1413.2 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 291 (2) K

  • 0.22 × 0.19 × 0.19 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation.]) Tmin = 0.704, Tmax = 0.737

  • 13344 measured reflections

  • 2580 independent reflections

  • 2253 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.07

  • 2580 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC, (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC, (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

SO42- anion-bridged dimeric complexes of Cu(II) are reported extensively (Tamasi & Cini, 2003). In most of these structures the SO42- anion acts as a bidentate bridge (Springsteen et al., 2006; He & Han, 2006; Arnold et al., 2001; Thompson et al., 1998; Endres et al., 1984). However, there are only two known examples of the tridentate bridge form (Hatzidimitriou et al., 2006; Dhar et al., 2004). The crystal structure of the title compound, [Cu(bdmpm)(SO4)]2 (bdmpm = bis(1,1-bis(3,5-dimethylpyrazol-1-yl)methane), shows a perfect centrosymmetric dimer, as two {Cu(bdmpm)}2+ units are bridged by two sulfate anions in the complex (Fig. 1). The Cu···Cu distance is 3.769 (11) Å and the copper atom has a trigonal bipyramidal CuN2O3 coordination geometry with the sulfate O(2) atom and the N(1) atom as axial ligand atoms.

Related literature top

For related literature, see: Arnold et al. (2001); Dhar et al. (2004); Endres et al. (1984); Hatzidimitriou et al. (2006); He & Han (2006); Springsteen et al. (2006); Tamasi & Cini (2003); Thompson et al. (1998).

Experimental top

The reaction of CuSO4.5H2O (25 mg, 0.1 mmol) with bdmpm (22 mg, 0.11 mmol) in MeOH (10 ml) was carried out at ambient temperature for 10 minutes, the mixture was filtered and the filtrate was then left for crystallization.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 times Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level. Atoms labeled with the suffix A are related by the (-x, 1 - y, - z) symmetry operator.
Di-µ-sulfato-bis{[bis(3,5-dimethylpyrazol-1-yl)methane]copper(II)} top
Crystal data top
[Cu2(SO4)2(C11H16N4)2]F(000) = 748
Mr = 727.76Dx = 1.710 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4573 reflections
a = 7.5293 (15) Åθ = 3.0–25.4°
b = 10.734 (2) ŵ = 1.71 mm1
c = 17.740 (4) ÅT = 291 K
β = 99.73 (3)°Block, green
V = 1413.2 (5) Å30.22 × 0.19 × 0.19 mm
Z = 2
Data collection top
Rigaku Mercury
diffractometer
2580 independent reflections
Radiation source: fine-focus sealed tube2253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 14.6306 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1212
Tmin = 0.704, Tmax = 0.737l = 2121
13344 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.054P)2 + 2.0475P]
where P = (Fo2 + 2Fc2)/3
2580 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu2(SO4)2(C11H16N4)2]V = 1413.2 (5) Å3
Mr = 727.76Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.5293 (15) ŵ = 1.71 mm1
b = 10.734 (2) ÅT = 291 K
c = 17.740 (4) Å0.22 × 0.19 × 0.19 mm
β = 99.73 (3)°
Data collection top
Rigaku Mercury
diffractometer
2580 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2253 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.737Rint = 0.039
13344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
2580 reflectionsΔρmin = 0.42 e Å3
194 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00166 (6)0.33244 (4)0.03099 (2)0.03196 (18)
S10.08737 (12)0.41689 (8)0.10738 (5)0.0301 (2)
O10.2040 (4)0.3437 (3)0.06474 (16)0.0422 (7)
O20.0920 (3)0.4113 (3)0.05419 (15)0.0431 (7)
O30.0756 (4)0.3645 (3)0.18102 (15)0.0461 (7)
O40.1457 (4)0.5477 (3)0.11429 (16)0.0444 (7)
N10.1409 (4)0.2717 (3)0.10764 (17)0.0316 (7)
N20.0581 (4)0.1991 (3)0.16697 (17)0.0330 (7)
N30.1848 (4)0.1141 (3)0.11191 (17)0.0316 (7)
N40.1593 (4)0.1722 (3)0.04242 (17)0.0315 (7)
C10.3116 (5)0.2839 (4)0.1176 (2)0.0343 (9)
C20.3360 (6)0.2205 (4)0.1837 (2)0.0411 (10)
H20.44230.21520.20360.049*
C30.1745 (6)0.1674 (4)0.2137 (2)0.0365 (9)
C40.1213 (7)0.0889 (5)0.2836 (3)0.0557 (13)
H4A0.08140.00890.26910.084*
H4B0.22300.07850.30920.084*
H4C0.02530.12910.31750.084*
C50.4425 (5)0.3586 (4)0.0638 (2)0.0433 (10)
H5A0.38320.43070.04780.065*
H5B0.53990.38430.08880.065*
H5C0.48890.30890.01980.065*
C60.1344 (5)0.1810 (4)0.1760 (2)0.0331 (8)
H6A0.17510.13480.22280.040*
H6B0.19390.26150.18070.040*
C70.2597 (5)0.0001 (4)0.1088 (2)0.0360 (9)
C80.2818 (6)0.0156 (4)0.0345 (2)0.0418 (10)
H80.33000.08510.01400.050*
C90.2187 (5)0.0921 (4)0.0045 (2)0.0340 (9)
C100.3072 (7)0.0825 (4)0.1768 (3)0.0509 (11)
H10A0.40250.04490.21230.076*
H10B0.34620.16190.16090.076*
H10C0.20340.09360.20090.076*
C110.2141 (6)0.1216 (5)0.0874 (2)0.0495 (11)
H11A0.09120.13050.11230.074*
H11B0.27010.05520.11110.074*
H11C0.27790.19790.09200.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0298 (3)0.0404 (3)0.0263 (3)0.00246 (19)0.0063 (2)0.00527 (19)
S10.0345 (5)0.0300 (5)0.0251 (5)0.0015 (4)0.0034 (4)0.0014 (4)
O10.0415 (16)0.0482 (17)0.0366 (15)0.0127 (13)0.0059 (13)0.0060 (13)
O20.0328 (15)0.064 (2)0.0313 (14)0.0037 (13)0.0025 (12)0.0067 (14)
O30.063 (2)0.0462 (17)0.0285 (14)0.0050 (14)0.0053 (14)0.0078 (13)
O40.0621 (19)0.0333 (15)0.0372 (15)0.0054 (14)0.0068 (14)0.0024 (12)
N10.0287 (16)0.0381 (18)0.0286 (16)0.0030 (14)0.0066 (13)0.0039 (14)
N20.0355 (18)0.0353 (17)0.0287 (16)0.0059 (14)0.0069 (14)0.0051 (14)
N30.0357 (17)0.0299 (16)0.0297 (16)0.0044 (14)0.0068 (14)0.0006 (14)
N40.0336 (17)0.0320 (17)0.0293 (16)0.0045 (13)0.0062 (14)0.0010 (13)
C10.033 (2)0.034 (2)0.038 (2)0.0010 (16)0.0112 (17)0.0067 (17)
C20.041 (2)0.044 (2)0.043 (2)0.0049 (19)0.0210 (19)0.0026 (19)
C30.044 (2)0.034 (2)0.035 (2)0.0025 (17)0.0155 (19)0.0045 (17)
C40.068 (3)0.059 (3)0.044 (3)0.004 (2)0.023 (2)0.023 (2)
C50.028 (2)0.057 (3)0.045 (2)0.0065 (19)0.0064 (19)0.002 (2)
C60.039 (2)0.035 (2)0.0249 (18)0.0016 (17)0.0035 (16)0.0009 (16)
C70.034 (2)0.029 (2)0.043 (2)0.0028 (16)0.0017 (17)0.0007 (17)
C80.046 (2)0.035 (2)0.044 (2)0.0067 (18)0.0077 (19)0.0071 (19)
C90.031 (2)0.034 (2)0.037 (2)0.0013 (16)0.0057 (17)0.0069 (17)
C100.069 (3)0.035 (2)0.047 (3)0.011 (2)0.003 (2)0.005 (2)
C110.057 (3)0.059 (3)0.034 (2)0.010 (2)0.011 (2)0.008 (2)
Geometric parameters (Å, º) top
Cu1—N11.963 (3)C2—H20.9300
Cu1—O21.964 (3)C3—C41.497 (6)
Cu1—O12.085 (3)C4—H4A0.9600
Cu1—N42.094 (3)C4—H4B0.9600
Cu1—O4i2.125 (3)C4—H4C0.9600
Cu1—S12.5939 (11)C5—H5A0.9600
S1—O31.439 (3)C5—H5B0.9600
S1—O41.470 (3)C5—H5C0.9600
S1—O11.479 (3)C6—H6A0.9700
S1—O21.513 (3)C6—H6B0.9700
O4—Cu1i2.125 (3)C7—C81.365 (5)
N1—C11.333 (5)C7—C101.489 (6)
N1—N21.372 (4)C8—C91.390 (6)
N2—C31.348 (5)C8—H80.9300
N2—C61.444 (5)C9—C111.499 (5)
N3—C71.354 (5)C10—H10A0.9600
N3—N41.366 (4)C10—H10B0.9600
N3—C61.449 (5)C10—H10C0.9600
N4—C91.326 (5)C11—H11A0.9600
C1—C21.394 (5)C11—H11B0.9600
C1—C51.486 (6)C11—H11C0.9600
C2—C31.367 (6)
N1—Cu1—O2168.29 (12)C3—C2—H2126.4
N1—Cu1—O1100.44 (11)C1—C2—H2126.4
O2—Cu1—O169.90 (11)N2—C3—C2106.4 (3)
N1—Cu1—N491.60 (12)N2—C3—C4122.8 (4)
O2—Cu1—N498.70 (12)C2—C3—C4130.8 (4)
O1—Cu1—N4117.24 (12)C3—C4—H4A109.5
N1—Cu1—O4i89.80 (12)C3—C4—H4B109.5
O2—Cu1—O4i93.50 (11)H4A—C4—H4B109.5
O1—Cu1—O4i139.06 (11)C3—C4—H4C109.5
N4—Cu1—O4i101.80 (12)H4A—C4—H4C109.5
N1—Cu1—S1134.03 (9)H4B—C4—H4C109.5
O2—Cu1—S135.47 (8)C1—C5—H5A109.5
O1—Cu1—S134.73 (8)C1—C5—H5B109.5
N4—Cu1—S1115.22 (9)H5A—C5—H5B109.5
O4i—Cu1—S1117.63 (8)C1—C5—H5C109.5
O3—S1—O4111.17 (17)H5A—C5—H5C109.5
O3—S1—O1112.93 (18)H5B—C5—H5C109.5
O4—S1—O1110.82 (18)N2—C6—N3111.7 (3)
O3—S1—O2111.43 (17)N2—C6—H6A109.3
O4—S1—O2108.23 (17)N3—C6—H6A109.3
O1—S1—O2101.81 (16)N2—C6—H6B109.3
O3—S1—Cu1132.76 (13)N3—C6—H6B109.3
O4—S1—Cu1115.83 (12)H6A—C6—H6B107.9
O1—S1—Cu153.44 (11)N3—C7—C8105.6 (3)
O2—S1—Cu148.89 (11)N3—C7—C10123.2 (4)
S1—O1—Cu191.83 (14)C8—C7—C10131.1 (4)
S1—O2—Cu195.64 (14)C7—C8—C9107.0 (4)
S1—O4—Cu1i114.00 (17)C7—C8—H8126.5
C1—N1—N2106.1 (3)C9—C8—H8126.5
C1—N1—Cu1134.3 (3)N4—C9—C8110.4 (3)
N2—N1—Cu1119.6 (2)N4—C9—C11121.7 (4)
C3—N2—N1110.9 (3)C8—C9—C11127.9 (4)
C3—N2—C6129.9 (3)C7—C10—H10A109.5
N1—N2—C6118.6 (3)C7—C10—H10B109.5
C7—N3—N4111.8 (3)H10A—C10—H10B109.5
C7—N3—C6130.3 (3)C7—C10—H10C109.5
N4—N3—C6117.8 (3)H10A—C10—H10C109.5
C9—N4—N3105.1 (3)H10B—C10—H10C109.5
C9—N4—Cu1136.3 (3)C9—C11—H11A109.5
N3—N4—Cu1117.0 (2)C9—C11—H11B109.5
N1—C1—C2109.3 (3)H11A—C11—H11B109.5
N1—C1—C5121.1 (3)C9—C11—H11C109.5
C2—C1—C5129.6 (4)H11A—C11—H11C109.5
C3—C2—C1107.3 (3)H11B—C11—H11C109.5
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(SO4)2(C11H16N4)2]
Mr727.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)7.5293 (15), 10.734 (2), 17.740 (4)
β (°) 99.73 (3)
V3)1413.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.22 × 0.19 × 0.19
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.704, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
13344, 2580, 2253
Rint0.039
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.07
No. of reflections2580
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.42

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge Jiangxi Science and Technology Normal University for funding.

References

First citationArnold, P. J., Davies, S. C., Dilworth, J. R., Durrant, M. C., Griffiths, D. V., Hughes, D. L., Richards, R. L. & Sharpe, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 736–746.  Web of Science CSD CrossRef Google Scholar
First citationDhar, S., Nethaji, M. & Chakravarty, A. R. (2004). J. Chem. Soc. Dalton Trans. pp. 4180–4184.  CrossRef Google Scholar
First citationEndres, H., Noethe, D., Rossato, E. & Hatfield, W. E. (1984). Inorg. Chem. 23, 3467–3473.  CSD CrossRef CAS Web of Science Google Scholar
First citationHatzidimitriou, A. G., Kapnisti, M. & Voutsas, G. (2006). Z. Kristallogr. New Cryst. Struct. 221, 532–534.  CAS Google Scholar
First citationHe, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2676–m2677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation.  Google Scholar
First citationRigaku/MSC, (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC, (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpringsteen, C. H., Sweeder, R. D. & LaDuca, R. L. (2006). Cryst. Growth Des. 6, 2308–2314.  Web of Science CSD CrossRef CAS Google Scholar
First citationTamasi, G. & Cini, R. (2003). J. Chem. Soc. Dalton Trans. pp. 2928–2936.  CrossRef Google Scholar
First citationThompson, L. K., Xu, Z. Q., Goeta, A. E., Howard, J. A. K., Clase, H. J. & Miller, D. O. (1998). Inorg. Chem. 37, 3217–3229.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds