organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Amino­phenyl­sulfonyl)-N-(2-nitro­phenyl­sulfonyl)methylamine

aCollege of Science, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
*Correspondence e-mail: songzuwei2008@yahoo.cn

(Received 22 July 2008; accepted 3 September 2008; online 13 September 2008)

In the title mol­ecule, C13H13N3O6S2, the two benzene rings form a dihedral angle of 28.59 (7)°. The crystal sructure exhibits weak inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and ππ inter­actions [centroid-to-centroid distance = 3.899 (3) Å].

Related literature

For applications of sulfonimide-containing compounds, see: Kamoshita et al. (1987[Kamoshita, K., Matsumoto, H. & Nagano, E. (1987). US Patent US 4 670 046.]); Zhang et al. (2007[Zhang, Z. B., Zhou, S. Y. & Nie, J. (2007). J. Mol. Catal. A Chem. 265, 9-14.]). For the crystal structure of a related compound, see: Henschel et al. (1996[Henschel, D., Hiemisch, O., Blaschette, A. & Jones, P. G. (1996). Z. Naturforsch. Teil B, 51, 1313-1315.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N3O6S2

  • Mr = 371.38

  • Orthorhombic, P b c a

  • a = 13.844 (3) Å

  • b = 12.942 (2) Å

  • c = 16.645 (3) Å

  • V = 2982.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 153 (2) K

  • 0.60 × 0.56 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.733, Tmax = 0.969

  • 34829 measured reflections

  • 2630 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.08

  • 2630 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3C⋯O1ii 0.88 2.52 3.366 (2) 160
C12—H12A⋯O2ii 0.95 2.59 3.508 (3) 162
C9—H9A⋯N3iii 0.95 2.59 3.372 (3) 140
Symmetry codes: (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many compounds containing sulfonimide groups possess a broad spectrum of biological activities and can be widely used as herbicides (Kamoshita et al., 1987) or catalysts (Zhang et al., 2007). Herein we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are in a good agreement with those reported previously for related compounds (Henschel et al., 1996). Two benzene rings (C1–C6 and C8–C13) form a dihedral angle of 28.59 (7)°.

The crystal packing exhibits ππ interactions (Table 1) and weak intermolecular N—H···O, C—H···N and C—H···O hydrogen bonds (Table 2).

Related literature top

For useful applications of sulfonimide-containing compounds, see: Kamoshita et al. (1987); Zhang et al. (2007). For the crystal structure of a related compound, see: Henschel et al. (1996). Cg1 and Cg2 are the centroids of atoms C1–C6 and C8–C13, respectively.

Experimental top

A solution of 2-aminobenzene-1-sulfonyl chloride (10 mmol) 1.92 g dissolved in anhydrous CH2Cl2 (10 ml), and dropwise added over a period of 10 min to a solution of 2-nitro-N-methyl-benzenesulfonamide (10 mmol) 2.16g and EtN(i-Pr)2 (3 mmol) in CH2Cl2 (10 ml) at 273 K. The mixture was stirred at r.t. for 4 h. The organic phase was washed with 2N HCl twice, and dried over anhydrous Na2SO4. The solvent was removed and the residue was purified by flash chromatography (3:1 Cyclohexane:Dichloromethane) to give 1 as a white solid (3.52 mg, 95 %). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol and Dichloromethane at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with N—H = 0.88 Å, C—H = 0.95 or 0.98 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C,N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Packing diagram.
N-(2-Aminophenylsulfonyl)-N-(2-nitrophenylsulfonyl)methylamine top
Crystal data top
C13H13N3O6S2F(000) = 1536
Mr = 371.38Dx = 1.654 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 37072 reflections
a = 13.844 (3) Åθ = 6.3–55.1°
b = 12.942 (2) ŵ = 0.40 mm1
c = 16.645 (3) ÅT = 153 K
V = 2982.2 (10) Å3Platelet, yellow
Z = 80.60 × 0.56 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2630 independent reflections
Radiation source: Rotating anode2428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω oscillation scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.733, Tmax = 0.969k = 1515
34829 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0473P)2 + 2.1978P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2630 reflectionsΔρmax = 0.42 e Å3
218 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2001), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (3)
Crystal data top
C13H13N3O6S2V = 2982.2 (10) Å3
Mr = 371.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.844 (3) ŵ = 0.40 mm1
b = 12.942 (2) ÅT = 153 K
c = 16.645 (3) Å0.60 × 0.56 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
2630 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2428 reflections with I > 2σ(I)
Tmin = 0.733, Tmax = 0.969Rint = 0.027
34829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.08Δρmax = 0.42 e Å3
2630 reflectionsΔρmin = 0.39 e Å3
218 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22770 (3)0.20009 (3)0.06984 (2)0.01845 (14)
S20.43344 (3)0.22433 (4)0.04145 (2)0.01991 (15)
O10.49675 (13)0.12116 (13)0.20069 (10)0.0487 (5)
O20.40368 (12)0.08365 (11)0.10127 (9)0.0364 (4)
O30.51339 (9)0.15580 (11)0.03241 (8)0.0281 (3)
O40.43340 (9)0.29881 (11)0.10485 (8)0.0275 (3)
O50.16079 (10)0.12669 (11)0.03769 (8)0.0288 (3)
O60.23132 (9)0.30186 (10)0.03747 (8)0.0243 (3)
N10.44722 (12)0.14579 (12)0.14329 (9)0.0266 (4)
N20.33660 (11)0.14908 (11)0.05243 (9)0.0214 (3)
N30.14942 (13)0.03260 (13)0.19054 (11)0.0366 (4)
H3B0.15900.01880.13940.044*
H3C0.12510.01500.22240.044*
C10.43468 (12)0.25628 (14)0.12717 (11)0.0211 (4)
C20.43337 (13)0.31966 (16)0.19394 (11)0.0268 (4)
H2A0.44410.29170.24600.032*
C30.41632 (14)0.42395 (16)0.18432 (12)0.0301 (5)
H3D0.41380.46780.23000.036*
C40.40295 (14)0.46490 (15)0.10843 (12)0.0298 (4)
H4B0.39240.53700.10200.036*
C50.40499 (13)0.40078 (15)0.04174 (11)0.0238 (4)
H5B0.39610.42950.01020.029*
C60.41971 (12)0.29552 (14)0.04974 (11)0.0186 (4)
C70.34860 (16)0.03595 (15)0.06305 (13)0.0347 (5)
H7A0.41550.01660.05110.052*
H7B0.30490.00060.02640.052*
H7C0.33330.01710.11860.052*
C80.21121 (13)0.20842 (14)0.17402 (11)0.0211 (4)
C90.23455 (13)0.30465 (15)0.20835 (12)0.0255 (4)
H9A0.26070.35800.17580.031*
C100.21958 (14)0.32160 (18)0.28892 (12)0.0328 (5)
H10A0.23510.38640.31250.039*
C110.18139 (14)0.24220 (19)0.33523 (12)0.0359 (5)
H11A0.17070.25360.39090.043*
C120.15875 (14)0.14838 (18)0.30301 (12)0.0340 (5)
H12A0.13340.09570.33670.041*
C130.17225 (13)0.12809 (15)0.22050 (12)0.0272 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0183 (2)0.0203 (2)0.0167 (2)0.00124 (16)0.00013 (16)0.00004 (16)
S20.0185 (2)0.0241 (3)0.0171 (2)0.00214 (16)0.00052 (16)0.00013 (17)
O10.0593 (11)0.0436 (10)0.0431 (9)0.0052 (8)0.0250 (8)0.0135 (7)
O20.0501 (9)0.0231 (7)0.0360 (8)0.0032 (7)0.0085 (7)0.0021 (6)
O30.0214 (7)0.0326 (8)0.0304 (7)0.0080 (6)0.0002 (5)0.0034 (6)
O40.0305 (7)0.0326 (8)0.0195 (7)0.0013 (6)0.0024 (5)0.0053 (5)
O50.0265 (7)0.0303 (7)0.0297 (7)0.0043 (6)0.0045 (5)0.0064 (6)
O60.0249 (7)0.0236 (7)0.0246 (7)0.0045 (5)0.0016 (5)0.0051 (5)
N10.0301 (8)0.0271 (9)0.0226 (8)0.0023 (7)0.0029 (7)0.0057 (7)
N20.0223 (8)0.0175 (8)0.0243 (7)0.0030 (6)0.0058 (6)0.0015 (6)
N30.0400 (10)0.0259 (9)0.0438 (10)0.0013 (8)0.0158 (8)0.0048 (8)
C10.0195 (9)0.0215 (9)0.0222 (9)0.0018 (7)0.0022 (7)0.0026 (7)
C20.0257 (10)0.0352 (11)0.0194 (9)0.0058 (8)0.0032 (7)0.0002 (8)
C30.0301 (10)0.0315 (11)0.0287 (10)0.0056 (8)0.0013 (8)0.0107 (8)
C40.0310 (10)0.0213 (10)0.0371 (11)0.0013 (8)0.0021 (9)0.0041 (8)
C50.0235 (9)0.0227 (9)0.0251 (9)0.0004 (7)0.0024 (7)0.0027 (7)
C60.0163 (8)0.0220 (9)0.0176 (9)0.0013 (7)0.0014 (7)0.0004 (7)
C70.0367 (11)0.0204 (10)0.0470 (12)0.0061 (9)0.0130 (10)0.0079 (9)
C80.0174 (8)0.0287 (10)0.0171 (9)0.0045 (7)0.0010 (7)0.0007 (7)
C90.0194 (9)0.0316 (11)0.0256 (10)0.0026 (8)0.0009 (7)0.0022 (8)
C100.0245 (10)0.0453 (12)0.0285 (10)0.0031 (9)0.0014 (8)0.0121 (9)
C110.0248 (10)0.0614 (15)0.0215 (10)0.0066 (10)0.0013 (8)0.0007 (10)
C120.0254 (10)0.0476 (13)0.0289 (10)0.0092 (9)0.0078 (8)0.0112 (9)
C130.0205 (9)0.0299 (10)0.0311 (10)0.0062 (8)0.0045 (8)0.0078 (8)
Geometric parameters (Å, º) top
S1—O61.4239 (13)C3—C41.382 (3)
S1—O51.4307 (13)C3—H3D0.9500
S1—N21.6711 (15)C4—C51.386 (3)
S1—C81.7523 (18)C4—H4B0.9500
S2—O31.4263 (13)C5—C61.384 (3)
S2—O41.4291 (14)C5—H5B0.9500
S2—N21.6671 (15)C7—H7A0.9800
S2—C61.7859 (18)C7—H7B0.9800
O1—N11.218 (2)C7—H7C0.9800
O2—N11.224 (2)C8—C131.404 (3)
N1—C11.465 (2)C8—C91.408 (3)
N2—C71.484 (2)C9—C101.375 (3)
N3—C131.370 (3)C9—H9A0.9500
N3—H3B0.8800C10—C111.389 (3)
N3—H3C0.8800C10—H10A0.9500
C1—C21.381 (3)C11—C121.364 (3)
C1—C61.401 (2)C11—H11A0.9500
C2—C31.380 (3)C12—C131.411 (3)
C2—H2A0.9500C12—H12A0.9500
Cg1···Cg2i3.899 (3)
O6—S1—O5119.70 (8)C5—C4—H4B120.0
O6—S1—N2105.55 (8)C6—C5—C4121.02 (18)
O5—S1—N2104.89 (8)C6—C5—H5B119.5
O6—S1—C8108.79 (8)C4—C5—H5B119.5
O5—S1—C8109.06 (8)C5—C6—C1117.86 (17)
N2—S1—C8108.27 (8)C5—C6—S2116.22 (14)
O3—S2—O4119.85 (8)C1—C6—S2125.40 (14)
O3—S2—N2105.80 (8)N2—C7—H7A109.5
O4—S2—N2108.22 (8)N2—C7—H7B109.5
O3—S2—C6108.28 (8)H7A—C7—H7B109.5
O4—S2—C6106.24 (8)N2—C7—H7C109.5
N2—S2—C6107.99 (8)H7A—C7—H7C109.5
O1—N1—O2123.58 (17)H7B—C7—H7C109.5
O1—N1—C1117.75 (16)C13—C8—C9121.31 (17)
O2—N1—C1118.56 (15)C13—C8—S1123.36 (15)
C7—N2—S2119.96 (13)C9—C8—S1115.23 (14)
C7—N2—S1118.04 (12)C10—C9—C8120.18 (19)
S2—N2—S1120.91 (9)C10—C9—H9A119.9
C13—N3—H3B120.0C8—C9—H9A119.9
C13—N3—H3C120.0C9—C10—C11118.7 (2)
H3B—N3—H3C120.0C9—C10—H10A120.6
C2—C1—C6121.53 (18)C11—C10—H10A120.6
C2—C1—N1115.70 (16)C12—C11—C10121.86 (19)
C6—C1—N1122.68 (16)C12—C11—H11A119.1
C3—C2—C1119.33 (18)C10—C11—H11A119.1
C3—C2—H2A120.3C11—C12—C13121.21 (19)
C1—C2—H2A120.3C11—C12—H12A119.4
C2—C3—C4120.27 (18)C13—C12—H12A119.4
C2—C3—H3D119.9N3—C13—C8123.80 (18)
C4—C3—H3D119.9N3—C13—C12119.46 (18)
C3—C4—C5119.96 (19)C8—C13—C12116.72 (19)
C3—C4—H4B120.0
O3—S2—N2—C78.83 (17)C2—C1—C6—S2172.37 (14)
O4—S2—N2—C7120.79 (15)N1—C1—C6—S211.1 (2)
C6—S2—N2—C7124.60 (15)O3—S2—C6—C5134.60 (14)
O3—S2—N2—S1176.65 (10)O4—S2—C6—C54.64 (16)
O4—S2—N2—S147.02 (12)N2—S2—C6—C5111.28 (15)
C6—S2—N2—S167.59 (12)O3—S2—C6—C136.88 (18)
O6—S1—N2—C7166.74 (14)O4—S2—C6—C1166.83 (15)
O5—S1—N2—C739.44 (16)N2—S2—C6—C177.25 (16)
C8—S1—N2—C776.90 (16)O6—S1—C8—C13157.41 (15)
O6—S1—N2—S225.21 (12)O5—S1—C8—C1325.25 (18)
O5—S1—N2—S2152.52 (10)N2—S1—C8—C1388.35 (16)
C8—S1—N2—S291.14 (11)O6—S1—C8—C918.95 (16)
O1—N1—C1—C232.8 (2)O5—S1—C8—C9151.11 (13)
O2—N1—C1—C2143.45 (18)N2—S1—C8—C995.29 (14)
O1—N1—C1—C6150.48 (18)C13—C8—C9—C100.1 (3)
O2—N1—C1—C633.2 (3)S1—C8—C9—C10176.58 (15)
C6—C1—C2—C30.4 (3)C8—C9—C10—C110.1 (3)
N1—C1—C2—C3176.31 (17)C9—C10—C11—C120.2 (3)
C1—C2—C3—C41.5 (3)C10—C11—C12—C130.7 (3)
C2—C3—C4—C51.1 (3)C9—C8—C13—N3179.11 (17)
C3—C4—C5—C60.4 (3)S1—C8—C13—N34.8 (3)
C4—C5—C6—C11.4 (3)C9—C8—C13—C120.6 (3)
C4—C5—C6—S2173.57 (15)S1—C8—C13—C12176.77 (14)
C2—C1—C6—C51.0 (3)C11—C12—C13—N3179.44 (19)
N1—C1—C6—C5177.53 (16)C11—C12—C13—C80.9 (3)
Symmetry code: (i) x1/2, y1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···O1ii0.882.523.366 (2)160
C12—H12A···O2ii0.952.593.508 (3)162
C9—H9A···N3iii0.952.593.372 (3)140
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC13H13N3O6S2
Mr371.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)153
a, b, c (Å)13.844 (3), 12.942 (2), 16.645 (3)
V3)2982.2 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.60 × 0.56 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.733, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
34829, 2630, 2428
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.08
No. of reflections2630
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.39

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Selected interatomic distances (Å) top
Cg1···Cg2i3.899 (3)
Symmetry code: (i) x1/2, y1/2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3C···O1ii0.882.523.366 (2)160.4
C12—H12A···O2ii0.952.593.508 (3)162.0
C9—H9A···N3iii0.952.593.372 (3)139.7
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z.
 

References

First citationHenschel, D., Hiemisch, O., Blaschette, A. & Jones, P. G. (1996). Z. Naturforsch. Teil B, 51, 1313–1315.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKamoshita, K., Matsumoto, H. & Nagano, E. (1987). US Patent US 4 670 046.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z. B., Zhou, S. Y. & Nie, J. (2007). J. Mol. Catal. A Chem. 265, 9-14.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds