organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-benzyl-5-[1-(4-meth­oxy­phen­yl)-4-oxo-3-phenyl­azetidin-2-yl]-4-nitro-3-phenyl­pyrrolidine-2-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 25 August 2008; accepted 17 September 2008; online 24 September 2008)

In the title mol­ecule, C35H33N3O6, the pyrrolidine ring adopts a twist conformation. The mol­ecules are paired into centrosymmetric dimers by weak inter­molecular C—H⋯O hydrogen bonds. The dimers inter­act further again via C—H⋯O hydrogen bonds and N—H⋯O intramolecular interaction also stabilize the crystal packing.

Related literature

For the pharmacological properties of β-lactam derivatives, see: Alcaide et al. (2000[Alcaide, B., Almendros, P., Salgado, N. R. & Rodrigues-Vicente, A. (2000). J. Org. Chem. 65, 4453-4455.]). For general background, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]); Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C35H33N3O6

  • Mr = 591.64

  • Triclinic, [P \overline 1]

  • a = 10.1727 (2) Å

  • b = 10.4210 (2) Å

  • c = 15.1680 (3) Å

  • α = 91.833 (1)°

  • β = 106.154 (1)°

  • γ = 102.536 (1)°

  • V = 1500.31 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.23 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.987

  • 29479 measured reflections

  • 5290 independent reflections

  • 4498 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.02

  • 5290 reflections

  • 400 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.898 (19) 2.314 (18) 2.7378 (18) 108.7 (14)
C7—H7B⋯O3i 0.96 2.48 3.145 (2) 126
C14—H14⋯O5ii 0.93 2.60 3.359 (2) 139
C30—H30⋯O1iii 0.93 2.57 3.240 (2) 129
Symmetry codes: (i) -x, -y+2, -z; (ii) x-1, y, z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

An extensive use of common β-lactam antibiotics, such as penicillin and cephalosporins, in medicine has resulted in an increasing number of resistant bacteria through mutation and β-lactamase gene transfer. The importance and structural diversity of biologically active β-lactam antibiotics, the most widely employed family of antimicrobial agents led to the development of efficient approaches for the construction of appropriately substituted 2-azetidinones (Alcaide et al., 2000). As a contribution to this field, we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the pyrrolidine ring adopts a twist conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameter (Nardelli, 1983) for this ring are q2 = 0.382 (2) Å, π = 340.9 (2)° and Δ2(C3) = 0.48 (14)°, respectively. The sum of angles at N1 of the pyrrolidine ring system [327.14 (12)°] is in accordance with sp3 hybridization (Beddoes et al., 1986). The β-lactam ring is planar and the keto atom O5 deviates from this plane at 0.049 (1) Å.

The weak intermolecular C—H···O hydrogen bonds (Table 1) contribute to the crystal packing stability.

Related literature top

For the pharmacological properties of β-lactam derivatives, see: Alcaide et al. (2000). For general background, see: Cremer & Pople (1975); Nardelli (1983); Beddoes et al. (1986).

Experimental top

β-Lactam aldehyde (1.0 mol) was treated with phenyl alanine methyl ester hydrochloride in the presence of Et3N (2.5 mol) and anhydrous MgSO4 (2.0 g) in dry chloromethane (10 ml) at room temperature for 12 h to give the imine. The imine was washed with water and dried over Na2SO4. The solvent was evaporated under vacuum. The imine was then stirred with silver (I) acetate and nitrostyene (1.0 mol) in the presence of Et3N (1.2 mol) and molecular sieves in dry toluene (30 ml) again at room temperature for 12 h. The reaction mixture was filtered through a plug celite. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatogaraphy on silicagel (100–200 mesh), with hexane and ethyl acetate (7:3) as eluent to give the product. The compound was recrystallized from ethyl acetate.

Refinement top

C-bound H atoms were geometrically positioned (C—H=0.93–0.98 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms. The H atom attached to N was located from difference Fourier map and isotropically refined with bond restraint N—H=0.90 (2) Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoids.
Methyl 2-benzyl-5-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]- 4-nitro-3-phenylpyrrolidine-2-carboxylate top
Crystal data top
C35H33N3O6Z = 2
Mr = 591.64F(000) = 624
Triclinic, P1Dx = 1.310 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1727 (2) ÅCell parameters from 4523 reflections
b = 10.4210 (2) Åθ = 2.1–25.0°
c = 15.1680 (3) ŵ = 0.09 mm1
α = 91.833 (1)°T = 293 K
β = 106.154 (1)°Block, colourless
γ = 102.536 (1)°0.23 × 0.20 × 0.18 mm
V = 1500.31 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5290 independent reflections
Radiation source: fine-focus sealed tube4498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and ϕ scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1212
Tmin = 0.978, Tmax = 0.987k = 1212
29479 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.5651P]
where P = (Fo2 + 2Fc2)/3
5290 reflections(Δ/σ)max = 0.009
400 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C35H33N3O6γ = 102.536 (1)°
Mr = 591.64V = 1500.31 (5) Å3
Triclinic, P1Z = 2
a = 10.1727 (2) ÅMo Kα radiation
b = 10.4210 (2) ŵ = 0.09 mm1
c = 15.1680 (3) ÅT = 293 K
α = 91.833 (1)°0.23 × 0.20 × 0.18 mm
β = 106.154 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5290 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4498 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.987Rint = 0.022
29479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
5290 reflectionsΔρmin = 0.28 e Å3
400 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23296 (14)1.11254 (12)0.12037 (10)0.0626 (4)
O20.05010 (12)0.97536 (12)0.14730 (9)0.0516 (3)
O30.34127 (15)0.89947 (15)0.01081 (9)0.0693 (4)
O40.43868 (18)0.73840 (17)0.01654 (10)0.0826 (5)
O50.89861 (13)0.81334 (13)0.32648 (10)0.0665 (4)
O60.83342 (17)1.40874 (13)0.47301 (9)0.0727 (4)
N10.41420 (13)0.96169 (12)0.20111 (9)0.0360 (3)
H10.4247 (19)1.0180 (18)0.1586 (13)0.050 (5)*
C20.26396 (15)0.91317 (14)0.19096 (10)0.0344 (3)
C30.21203 (15)0.78623 (14)0.11656 (10)0.0351 (3)
H30.16510.81530.05770.042*
C40.34889 (15)0.75799 (14)0.10697 (10)0.0352 (3)
H40.34810.66420.11140.042*
C50.46471 (14)0.84462 (14)0.18892 (9)0.0333 (3)
H50.46410.79750.24370.040*
C60.18470 (16)1.01459 (14)0.14978 (10)0.0393 (3)
C70.0397 (2)1.0629 (2)0.11332 (17)0.0759 (6)
H7A0.03551.12420.16320.114*
H7B0.13481.01250.08730.114*
H7C0.00871.11050.06680.114*
C80.24250 (17)0.88720 (15)0.28635 (10)0.0390 (3)
H8A0.14510.84270.27820.047*
H8B0.30110.82920.31530.047*
C90.27898 (17)1.01341 (15)0.34880 (10)0.0421 (4)
C100.4168 (2)1.0744 (2)0.39661 (12)0.0592 (5)
H100.48931.03580.39230.071*
C110.4474 (3)1.1928 (2)0.45082 (14)0.0774 (7)
H110.54041.23300.48270.093*
C120.3418 (3)1.2512 (2)0.45787 (14)0.0780 (7)
H120.36321.33130.49360.094*
C130.2051 (3)1.1913 (2)0.41225 (15)0.0690 (6)
H130.13291.23000.41730.083*
C140.1743 (2)1.07297 (17)0.35862 (13)0.0533 (4)
H140.08081.03230.32830.064*
C150.11103 (17)0.66599 (15)0.13188 (12)0.0450 (4)
C160.02995 (19)0.64235 (19)0.08179 (17)0.0655 (6)
H160.06100.70280.04210.079*
C170.1244 (3)0.5302 (3)0.0903 (2)0.0917 (9)
H170.21850.51490.05580.110*
C180.0802 (3)0.4412 (3)0.1494 (2)0.0987 (10)
H180.14450.36640.15590.118*
C190.0593 (3)0.4625 (2)0.19912 (17)0.0898 (9)
H190.08960.40150.23860.108*
C200.15546 (12)0.57555 (12)0.19041 (7)0.0653 (5)
H200.24980.58990.22420.078*
N210.37621 (12)0.80108 (12)0.01871 (7)0.0463 (3)
C220.61299 (15)0.86856 (14)0.18124 (10)0.0358 (3)
H220.62250.91480.12730.043*
C230.68163 (16)0.74593 (15)0.18950 (11)0.0409 (4)
H230.72000.73300.13820.049*
C240.79266 (16)0.82884 (16)0.27273 (12)0.0453 (4)
N250.72602 (13)0.92975 (12)0.26579 (9)0.0400 (3)
C260.60056 (16)0.61819 (15)0.21114 (11)0.0398 (3)
C270.5883 (2)0.60247 (17)0.29894 (12)0.0544 (4)
H270.63500.67000.34600.065*
C280.5075 (2)0.48762 (19)0.31760 (14)0.0665 (6)
H280.49980.47890.37690.080*
C290.4386 (2)0.38636 (18)0.24931 (14)0.0612 (5)
H290.38330.30970.26190.073*
C300.45205 (19)0.39919 (17)0.16239 (13)0.0543 (4)
H300.40660.33060.11590.065*
C310.53301 (17)0.51375 (16)0.14369 (12)0.0468 (4)
H310.54230.52080.08460.056*
C320.75777 (15)1.05282 (15)0.31897 (10)0.0387 (3)
C330.81676 (18)1.06067 (17)0.41328 (11)0.0492 (4)
H330.83680.98590.44080.059*
C340.84635 (19)1.17897 (18)0.46717 (12)0.0535 (4)
H340.88721.18410.53060.064*
C350.81481 (19)1.28903 (17)0.42629 (12)0.0499 (4)
C360.75824 (19)1.28152 (17)0.33134 (12)0.0519 (4)
H360.73931.35640.30360.062*
C370.73000 (17)1.16421 (16)0.27817 (11)0.0449 (4)
H370.69211.15980.21450.054*
C380.8872 (3)1.4202 (2)0.57069 (15)0.0889 (8)
H38A0.82291.36120.59540.133*
H38B0.89801.50930.59490.133*
H38C0.97691.39760.58780.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0623 (8)0.0387 (7)0.0866 (10)0.0095 (6)0.0213 (7)0.0223 (6)
O20.0399 (6)0.0535 (7)0.0648 (8)0.0186 (5)0.0139 (5)0.0148 (6)
O30.0656 (9)0.0890 (10)0.0612 (8)0.0237 (8)0.0238 (7)0.0355 (8)
O40.0925 (11)0.1026 (12)0.0673 (9)0.0283 (10)0.0449 (9)0.0130 (8)
O50.0401 (7)0.0584 (8)0.0846 (10)0.0125 (6)0.0084 (6)0.0024 (7)
O60.1005 (11)0.0491 (8)0.0573 (8)0.0088 (7)0.0136 (7)0.0094 (6)
N10.0327 (7)0.0317 (7)0.0411 (7)0.0024 (5)0.0109 (5)0.0018 (5)
C20.0316 (7)0.0306 (7)0.0388 (8)0.0036 (6)0.0095 (6)0.0020 (6)
C30.0315 (7)0.0329 (8)0.0378 (8)0.0040 (6)0.0083 (6)0.0006 (6)
C40.0326 (8)0.0333 (8)0.0366 (8)0.0046 (6)0.0079 (6)0.0009 (6)
C50.0318 (7)0.0334 (7)0.0320 (7)0.0040 (6)0.0078 (6)0.0028 (6)
C60.0422 (9)0.0321 (8)0.0410 (8)0.0069 (7)0.0099 (7)0.0007 (6)
C70.0667 (13)0.0884 (16)0.0871 (15)0.0484 (12)0.0209 (11)0.0243 (12)
C80.0400 (8)0.0355 (8)0.0433 (8)0.0080 (6)0.0155 (7)0.0062 (6)
C90.0494 (9)0.0405 (8)0.0364 (8)0.0042 (7)0.0174 (7)0.0052 (6)
C100.0550 (11)0.0741 (13)0.0402 (9)0.0027 (9)0.0111 (8)0.0032 (8)
C110.0784 (15)0.0843 (16)0.0468 (11)0.0218 (13)0.0156 (10)0.0148 (10)
C120.121 (2)0.0534 (12)0.0555 (12)0.0122 (13)0.0460 (13)0.0123 (9)
C130.1007 (17)0.0483 (11)0.0701 (13)0.0140 (11)0.0481 (13)0.0011 (9)
C140.0611 (11)0.0469 (10)0.0563 (10)0.0085 (8)0.0278 (9)0.0004 (8)
C150.0461 (9)0.0346 (8)0.0533 (9)0.0028 (7)0.0239 (8)0.0086 (7)
C160.0402 (10)0.0508 (11)0.1018 (16)0.0018 (8)0.0269 (10)0.0182 (10)
C170.0582 (14)0.0649 (15)0.147 (3)0.0187 (12)0.0532 (15)0.0343 (16)
C180.112 (2)0.0620 (15)0.121 (2)0.0379 (15)0.080 (2)0.0239 (15)
C190.143 (3)0.0435 (11)0.0733 (15)0.0174 (12)0.0472 (16)0.0008 (10)
C200.0855 (15)0.0458 (10)0.0552 (11)0.0057 (9)0.0221 (10)0.0024 (8)
N210.0357 (7)0.0606 (9)0.0356 (7)0.0024 (6)0.0071 (6)0.0049 (6)
C220.0321 (8)0.0377 (8)0.0335 (7)0.0021 (6)0.0081 (6)0.0027 (6)
C230.0353 (8)0.0430 (9)0.0446 (8)0.0088 (7)0.0128 (7)0.0002 (7)
C240.0314 (8)0.0437 (9)0.0556 (10)0.0053 (7)0.0070 (7)0.0049 (7)
N250.0313 (6)0.0392 (7)0.0417 (7)0.0039 (5)0.0021 (5)0.0000 (5)
C260.0378 (8)0.0364 (8)0.0442 (8)0.0113 (6)0.0089 (6)0.0004 (6)
C270.0722 (12)0.0402 (9)0.0420 (9)0.0042 (8)0.0101 (8)0.0016 (7)
C280.0963 (16)0.0480 (11)0.0496 (10)0.0039 (10)0.0220 (10)0.0089 (8)
C290.0716 (13)0.0393 (10)0.0695 (13)0.0046 (9)0.0220 (10)0.0065 (8)
C300.0542 (11)0.0395 (9)0.0630 (11)0.0047 (8)0.0139 (9)0.0107 (8)
C310.0459 (9)0.0468 (9)0.0470 (9)0.0100 (7)0.0147 (7)0.0069 (7)
C320.0301 (7)0.0392 (8)0.0411 (8)0.0009 (6)0.0073 (6)0.0020 (6)
C330.0527 (10)0.0442 (9)0.0423 (9)0.0062 (8)0.0038 (7)0.0067 (7)
C340.0576 (11)0.0546 (10)0.0370 (9)0.0031 (8)0.0038 (7)0.0007 (7)
C350.0508 (10)0.0430 (9)0.0480 (9)0.0006 (8)0.0117 (8)0.0037 (7)
C360.0572 (11)0.0418 (9)0.0508 (10)0.0072 (8)0.0096 (8)0.0077 (7)
C370.0459 (9)0.0437 (9)0.0373 (8)0.0029 (7)0.0056 (7)0.0050 (7)
C380.131 (2)0.0645 (14)0.0560 (13)0.0010 (14)0.0233 (13)0.0162 (10)
Geometric parameters (Å, º) top
O1—C61.1896 (19)C16—C171.377 (3)
O2—C61.3307 (19)C16—H160.9300
O2—C71.436 (2)C17—C181.370 (4)
O3—N211.2154 (17)C17—H170.9300
O4—N211.2098 (18)C18—C191.375 (4)
O5—C241.203 (2)C18—H180.9300
O6—C351.364 (2)C19—C201.394 (2)
O6—C381.421 (3)C19—H190.9300
N1—C51.4482 (19)C20—H200.9300
N1—C21.4642 (18)C22—N251.4773 (18)
N1—H10.898 (19)C22—C231.577 (2)
C2—C61.513 (2)C22—H220.9800
C2—C81.546 (2)C23—C261.504 (2)
C2—C31.6036 (19)C23—C241.526 (2)
C3—C151.507 (2)C23—H230.9800
C3—C41.528 (2)C24—N251.361 (2)
C3—H30.9800N25—C321.417 (2)
C4—N211.5040 (18)C26—C271.383 (2)
C4—C51.5491 (19)C26—C311.384 (2)
C4—H40.9800C27—C281.383 (3)
C5—C221.512 (2)C27—H270.9300
C5—H50.9800C28—C291.372 (3)
C7—H7A0.9600C28—H280.9300
C7—H7B0.9600C29—C301.370 (3)
C7—H7C0.9600C29—H290.9300
C8—C91.509 (2)C30—C311.382 (2)
C8—H8A0.9700C30—H300.9300
C8—H8B0.9700C31—H310.9300
C9—C141.382 (2)C32—C371.379 (2)
C9—C101.383 (2)C32—C331.381 (2)
C10—C111.386 (3)C33—C341.384 (2)
C10—H100.9300C33—H330.9300
C11—C121.371 (4)C34—C351.378 (3)
C11—H110.9300C34—H340.9300
C12—C131.365 (3)C35—C361.387 (2)
C12—H120.9300C36—C371.372 (2)
C13—C141.381 (3)C36—H360.9300
C13—H130.9300C37—H370.9300
C14—H140.9300C38—H38A0.9600
C15—C201.377 (2)C38—H38B0.9600
C15—C161.387 (3)C38—H38C0.9600
C6—O2—C7117.27 (15)C17—C18—H18120.0
C35—O6—C38117.72 (16)C19—C18—H18120.0
C5—N1—C2105.14 (11)C18—C19—C20120.0 (2)
C5—N1—H1112.7 (12)C18—C19—H19120.0
C2—N1—H1109.2 (12)C20—C19—H19120.0
N1—C2—C6109.82 (12)C15—C20—C19120.13 (17)
N1—C2—C8109.67 (12)C15—C20—H20119.9
C6—C2—C8109.45 (12)C19—C20—H20119.9
N1—C2—C3105.46 (11)O4—N21—O3123.59 (14)
C6—C2—C3107.03 (11)O4—N21—C4117.29 (14)
C8—C2—C3115.26 (11)O3—N21—C4119.01 (12)
C15—C3—C4113.48 (12)N25—C22—C5115.57 (12)
C15—C3—C2119.09 (12)N25—C22—C2386.76 (11)
C4—C3—C2103.76 (11)C5—C22—C23116.52 (12)
C15—C3—H3106.6N25—C22—H22111.9
C4—C3—H3106.6C5—C22—H22111.9
C2—C3—H3106.6C23—C22—H22111.9
N21—C4—C3111.73 (12)C26—C23—C24114.59 (13)
N21—C4—C5108.44 (11)C26—C23—C22118.28 (12)
C3—C4—C5104.15 (11)C24—C23—C2284.95 (11)
N21—C4—H4110.8C26—C23—H23112.1
C3—C4—H4110.8C24—C23—H23112.1
C5—C4—H4110.8C22—C23—H23112.1
N1—C5—C22115.85 (12)O5—C24—N25132.13 (16)
N1—C5—C4104.92 (11)O5—C24—C23134.79 (16)
C22—C5—C4115.49 (12)N25—C24—C2393.07 (12)
N1—C5—H5106.6C24—N25—C32132.30 (13)
C22—C5—H5106.6C24—N25—C2295.07 (12)
C4—C5—H5106.6C32—N25—C22132.58 (12)
O1—C6—O2124.43 (15)C27—C26—C31117.78 (15)
O1—C6—C2125.63 (15)C27—C26—C23120.89 (14)
O2—C6—C2109.88 (12)C31—C26—C23121.31 (14)
O2—C7—H7A109.5C28—C27—C26120.84 (16)
O2—C7—H7B109.5C28—C27—H27119.6
H7A—C7—H7B109.5C26—C27—H27119.6
O2—C7—H7C109.5C29—C28—C27120.53 (18)
H7A—C7—H7C109.5C29—C28—H28119.7
H7B—C7—H7C109.5C27—C28—H28119.7
C9—C8—C2111.98 (12)C30—C29—C28119.38 (17)
C9—C8—H8A109.2C30—C29—H29120.3
C2—C8—H8A109.2C28—C29—H29120.3
C9—C8—H8B109.2C29—C30—C31120.16 (16)
C2—C8—H8B109.2C29—C30—H30119.9
H8A—C8—H8B107.9C31—C30—H30119.9
C14—C9—C10117.83 (16)C30—C31—C26121.27 (16)
C14—C9—C8120.43 (15)C30—C31—H31119.4
C10—C9—C8121.74 (16)C26—C31—H31119.4
C9—C10—C11120.4 (2)C37—C32—C33119.64 (15)
C9—C10—H10119.8C37—C32—N25121.12 (14)
C11—C10—H10119.8C33—C32—N25119.24 (14)
C12—C11—C10120.6 (2)C32—C33—C34120.50 (16)
C12—C11—H11119.7C32—C33—H33119.8
C10—C11—H11119.7C34—C33—H33119.8
C13—C12—C11119.76 (19)C35—C34—C33119.57 (16)
C13—C12—H12120.1C35—C34—H34120.2
C11—C12—H12120.1C33—C34—H34120.2
C12—C13—C14119.7 (2)O6—C35—C34124.53 (16)
C12—C13—H13120.1O6—C35—C36115.68 (16)
C14—C13—H13120.1C34—C35—C36119.79 (16)
C13—C14—C9121.67 (19)C37—C36—C35120.38 (16)
C13—C14—H14119.2C37—C36—H36119.8
C9—C14—H14119.2C35—C36—H36119.8
C20—C15—C16119.00 (15)C36—C37—C32120.09 (15)
C20—C15—C3122.10 (14)C36—C37—H37120.0
C16—C15—C3118.82 (17)C32—C37—H37120.0
C17—C16—C15120.7 (2)O6—C38—H38A109.5
C17—C16—H16119.7O6—C38—H38B109.5
C15—C16—H16119.7H38A—C38—H38B109.5
C18—C17—C16120.2 (3)O6—C38—H38C109.5
C18—C17—H17119.9H38A—C38—H38C109.5
C16—C17—H17119.9H38B—C38—H38C109.5
C17—C18—C19120.0 (2)
C5—N1—C2—C6148.46 (12)C3—C4—N21—O4148.71 (14)
C5—N1—C2—C891.23 (13)C5—C4—N21—O497.06 (16)
C5—N1—C2—C333.45 (14)C3—C4—N21—O334.86 (17)
N1—C2—C3—C15139.14 (14)C5—C4—N21—O379.36 (16)
C6—C2—C3—C15103.94 (15)N1—C5—C22—N2567.52 (16)
C8—C2—C3—C1518.03 (19)C4—C5—C22—N25169.25 (12)
N1—C2—C3—C411.85 (14)N1—C5—C22—C23167.24 (12)
C6—C2—C3—C4128.77 (12)C4—C5—C22—C2369.53 (16)
C8—C2—C3—C4109.26 (13)N25—C22—C23—C26112.64 (14)
C15—C3—C4—N21124.95 (13)C5—C22—C23—C264.42 (19)
C2—C3—C4—N21104.33 (12)N25—C22—C23—C242.62 (11)
C15—C3—C4—C5118.20 (13)C5—C22—C23—C24119.68 (13)
C2—C3—C4—C512.52 (14)C26—C23—C24—O562.9 (3)
C2—N1—C5—C22170.75 (12)C22—C23—C24—O5178.2 (2)
C2—N1—C5—C442.13 (14)C26—C23—C24—N25116.01 (14)
N21—C4—C5—N185.54 (13)C22—C23—C24—N252.85 (12)
C3—C4—C5—N133.58 (14)O5—C24—N25—C320.4 (3)
N21—C4—C5—C2243.29 (16)C23—C24—N25—C32179.33 (15)
C3—C4—C5—C22162.40 (12)O5—C24—N25—C22178.0 (2)
C7—O2—C6—O15.1 (3)C23—C24—N25—C223.04 (12)
C7—O2—C6—C2177.64 (15)C5—C22—N25—C24120.89 (14)
N1—C2—C6—O17.7 (2)C23—C22—N25—C242.94 (12)
C8—C2—C6—O1128.15 (17)C5—C22—N25—C3261.5 (2)
C3—C2—C6—O1106.30 (18)C23—C22—N25—C32179.44 (16)
N1—C2—C6—O2175.08 (12)C24—C23—C26—C2723.7 (2)
C8—C2—C6—O254.63 (16)C22—C23—C26—C2774.1 (2)
C3—C2—C6—O270.92 (15)C24—C23—C26—C31157.88 (15)
N1—C2—C8—C967.48 (16)C22—C23—C26—C31104.29 (17)
C6—C2—C8—C953.05 (16)C31—C26—C27—C282.0 (3)
C3—C2—C8—C9173.72 (12)C23—C26—C27—C28176.51 (17)
C2—C8—C9—C1498.48 (17)C26—C27—C28—C290.5 (3)
C2—C8—C9—C1080.41 (19)C27—C28—C29—C300.9 (3)
C14—C9—C10—C111.3 (3)C28—C29—C30—C310.7 (3)
C8—C9—C10—C11177.64 (16)C29—C30—C31—C260.8 (3)
C9—C10—C11—C120.0 (3)C27—C26—C31—C302.1 (3)
C10—C11—C12—C131.0 (3)C23—C26—C31—C30176.33 (15)
C11—C12—C13—C140.6 (3)C24—N25—C32—C37143.82 (17)
C12—C13—C14—C90.7 (3)C22—N25—C32—C3733.0 (2)
C10—C9—C14—C131.7 (3)C24—N25—C32—C3336.6 (2)
C8—C9—C14—C13177.26 (16)C22—N25—C32—C33146.66 (16)
C4—C3—C15—C2041.98 (19)C37—C32—C33—C340.9 (3)
C2—C3—C15—C2080.61 (18)N25—C32—C33—C34178.74 (15)
C4—C3—C15—C16134.62 (15)C32—C33—C34—C350.9 (3)
C2—C3—C15—C16102.79 (17)C38—O6—C35—C340.9 (3)
C20—C15—C16—C170.0 (3)C38—O6—C35—C36178.2 (2)
C3—C15—C16—C17176.73 (17)C33—C34—C35—O6176.89 (17)
C15—C16—C17—C180.8 (3)C33—C34—C35—C362.2 (3)
C16—C17—C18—C191.2 (4)O6—C35—C36—C37177.39 (16)
C17—C18—C19—C200.9 (4)C34—C35—C36—C371.8 (3)
C16—C15—C20—C190.3 (2)C35—C36—C37—C320.0 (3)
C3—C15—C20—C19176.93 (16)C33—C32—C37—C361.3 (2)
C18—C19—C20—C150.1 (3)N25—C32—C37—C36178.29 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.898 (19)2.314 (18)2.7378 (18)108.7 (14)
C7—H7B···O3i0.962.483.145 (2)126
C14—H14···O5ii0.932.603.359 (2)139
C30—H30···O1iii0.932.573.240 (2)129
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC35H33N3O6
Mr591.64
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.1727 (2), 10.4210 (2), 15.1680 (3)
α, β, γ (°)91.833 (1), 106.154 (1), 102.536 (1)
V3)1500.31 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.978, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
29479, 5290, 4498
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.02
No. of reflections5290
No. of parameters400
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.898 (19)2.314 (18)2.7378 (18)108.7 (14)
C7—H7B···O3i0.962.483.145 (2)126.4
C14—H14···O5ii0.932.603.359 (2)138.9
C30—H30···O1iii0.932.573.240 (2)128.9
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z; (iii) x, y1, z.
 

Acknowledgements

SS thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his kind help in data collection.

References

First citationAlcaide, B., Almendros, P., Salgado, N. R. & Rodrigues-Vicente, A. (2000). J. Org. Chem. 65, 4453–4455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds