organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-N′-[(1E,2E)-3-phenyl­prop-2-enyl­­idene]benzohydrazide

aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: jiningning16@163.com

(Received 26 August 2008; accepted 5 September 2008; online 13 September 2008)

In mol­ecule of the title compound, C16H14N2O2, the two aromatic rings form a dihedral angle of 6.93 (3)° and an intramolecular N—H⋯O hydrogen bond occurs. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into zigzag chains running in the [10[\overline{1}]] direction.

Related literature

For the coordination chemistry of Schiff bases, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Musie et al. (2001[Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336-3341.]); Paul et al. (2002[Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803-5809.]); Shi et al. (2007[Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.]). For Schiff bases and biological systems, see: Anderson et al. (1997[Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O2

  • Mr = 266.29

  • Monoclinic, P 21 /n

  • a = 4.8892 (6) Å

  • b = 26.563 (3) Å

  • c = 10.7367 (13) Å

  • β = 102.305 (2)°

  • V = 1362.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.987, Tmax = 0.991

  • 7141 measured reflections

  • 2395 independent reflections

  • 1354 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.123

  • S = 1.05

  • 2395 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.97 2.6348 (19) 133
O1—H1⋯O2i 0.82 2.10 2.804 (3) 144
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, a number of Schiff-bases have been investigated in terms of their coordination chemistry (Garnovskii et al., 1993; Musie et al., 2001; Paul et al., 2002; Shi et al., 2007;) and biological systems (Anderson et al., 1997). In order to search for new Schiff-bases with higher bioactivity, the title compound, (I), was synthesized and its crystal structure determined.

In (I) (Fig. 1), the bond lengths and angles are in good agreement with the expected values (Allen et al., 1987). The intramolecular N—H···O hydrogen bond (Table 1) influences the molecular conformation. In the crystal, the molecules are linked into infinite chains along direction [10-1] by O—H···O hydrogen bonds (Table 1).

Related literature top

For the coordination chemistry of Schiff bases, see: Garnovskii et al. (1993); Musie et al. (2001); Paul et al. (2002); Shi et al. (2007); For Schiff bases and biological systems, see: Anderson et al. (1997). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by the reaction of 2-Hydroxy-benzoic acid hydrazide(1 mmol, 152.2 mg) with 3-Phenyl-propenal (1 mmol, 132.2 mg) in ethanol(20 ml) under reflux conditions (348 K) for 6 h. The solvent was removed and the solid product recrystallized from tetrahydrofuran. After six days colorless crystals suitable for X-ray diffraction study were obtained. Yield, 226.3 mg, 85%. m.p. 239–241 K. Analysis calculated for C16H14N2O2: C 72.16, H 5.30, N 10.52%; found: C 71.73, H 5.34, N 10.48%.

Refinement top

All H atoms were placed in idealized positions (C—H = 0.93— 0.97 Å, N—H = 0.86 Å) and refined as riding, with Uiso(H) = 1.2 or 1.5Ueq(C, N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
2-Hydroxy-N'-[(1E,2E)-3-phenylprop-2- enylidene]benzohydrazide top
Crystal data top
C16H14N2O2F(000) = 560
Mr = 266.29Dx = 1.298 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 932 reflections
a = 4.8892 (6) Åθ = 3.6–21.4°
b = 26.563 (3) ŵ = 0.09 mm1
c = 10.7367 (13) ÅT = 295 K
β = 102.305 (2)°Block, colourless
V = 1362.4 (3) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2395 independent reflections
Radiation source: fine-focus sealed tube1354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.987, Tmax = 0.991k = 2131
7141 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0505P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2395 reflectionsΔρmax = 0.14 e Å3
183 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)
Crystal data top
C16H14N2O2V = 1362.4 (3) Å3
Mr = 266.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8892 (6) ŵ = 0.09 mm1
b = 26.563 (3) ÅT = 295 K
c = 10.7367 (13) Å0.15 × 0.12 × 0.10 mm
β = 102.305 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2395 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1354 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.991Rint = 0.038
7141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
2395 reflectionsΔρmin = 0.13 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5440 (4)0.26610 (6)0.08347 (14)0.0702 (5)
H10.62010.26330.02270.105*
O20.4213 (4)0.27755 (6)0.45173 (13)0.0687 (5)
N10.2766 (4)0.24015 (6)0.26236 (15)0.0508 (5)
H1A0.28610.23780.18350.061*
N20.1041 (4)0.20892 (7)0.31262 (16)0.0513 (5)
C10.6656 (4)0.30391 (8)0.15959 (19)0.0483 (6)
C20.6118 (4)0.30864 (8)0.28157 (18)0.0450 (5)
C30.7379 (5)0.34777 (9)0.3569 (2)0.0634 (7)
H30.70480.35130.43860.076*
C40.9102 (6)0.38164 (9)0.3154 (2)0.0736 (8)
H40.98980.40800.36760.088*
C50.9638 (5)0.37611 (9)0.1959 (2)0.0662 (7)
H51.08260.39860.16740.079*
C60.8438 (5)0.33774 (9)0.1184 (2)0.0606 (7)
H60.88180.33430.03750.073*
C70.4304 (5)0.27445 (8)0.33872 (19)0.0476 (6)
C80.0380 (5)0.17709 (8)0.2358 (2)0.0529 (6)
H80.02200.17660.15100.064*
C90.2215 (5)0.14220 (8)0.2788 (2)0.0530 (6)
H90.24160.14420.36280.064*
C100.3630 (5)0.10743 (9)0.2044 (2)0.0576 (6)
H100.34190.10720.12030.069*
C110.5490 (5)0.06929 (8)0.2383 (2)0.0529 (6)
C120.6805 (5)0.03509 (10)0.1480 (2)0.0739 (8)
H120.64990.03690.06550.089*
C130.8563 (6)0.00161 (11)0.1777 (3)0.0842 (9)
H130.94040.02440.11560.101*
C140.9071 (6)0.00457 (10)0.2973 (3)0.0761 (8)
H141.02870.02880.31690.091*
C150.7772 (6)0.02847 (10)0.3879 (3)0.0807 (8)
H150.80840.02640.47020.097*
C160.6002 (5)0.06496 (9)0.3590 (2)0.0670 (7)
H160.51370.08710.42230.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0858 (13)0.0893 (13)0.0482 (9)0.0339 (10)0.0428 (9)0.0229 (9)
O20.0900 (14)0.0857 (12)0.0392 (9)0.0137 (9)0.0337 (8)0.0060 (8)
N10.0615 (13)0.0615 (12)0.0363 (9)0.0068 (10)0.0257 (9)0.0017 (9)
N20.0587 (13)0.0596 (12)0.0424 (10)0.0030 (10)0.0263 (9)0.0069 (9)
C10.0531 (15)0.0568 (14)0.0384 (12)0.0055 (11)0.0174 (10)0.0034 (10)
C20.0509 (15)0.0505 (13)0.0366 (11)0.0016 (11)0.0158 (10)0.0003 (10)
C30.083 (2)0.0703 (17)0.0416 (13)0.0132 (14)0.0247 (12)0.0088 (12)
C40.097 (2)0.0700 (18)0.0568 (16)0.0233 (15)0.0219 (15)0.0121 (13)
C50.0740 (19)0.0696 (17)0.0575 (15)0.0225 (14)0.0192 (14)0.0020 (13)
C60.0701 (18)0.0765 (17)0.0412 (12)0.0134 (13)0.0252 (12)0.0026 (12)
C70.0552 (15)0.0547 (14)0.0383 (12)0.0047 (11)0.0218 (11)0.0002 (11)
C80.0614 (17)0.0631 (15)0.0377 (12)0.0015 (12)0.0183 (11)0.0042 (11)
C90.0580 (16)0.0613 (15)0.0440 (13)0.0030 (12)0.0205 (11)0.0068 (11)
C100.0613 (17)0.0687 (16)0.0444 (13)0.0007 (13)0.0151 (12)0.0044 (12)
C110.0528 (16)0.0563 (15)0.0501 (14)0.0024 (12)0.0118 (11)0.0029 (12)
C120.079 (2)0.086 (2)0.0571 (16)0.0149 (16)0.0147 (14)0.0071 (14)
C130.082 (2)0.082 (2)0.085 (2)0.0215 (16)0.0086 (17)0.0090 (16)
C140.0696 (19)0.0665 (19)0.093 (2)0.0088 (14)0.0189 (16)0.0139 (16)
C150.092 (2)0.082 (2)0.0768 (18)0.0177 (16)0.0376 (17)0.0056 (16)
C160.076 (2)0.0684 (17)0.0609 (16)0.0142 (13)0.0244 (14)0.0028 (12)
Geometric parameters (Å, º) top
O1—C11.350 (2)C8—C91.433 (3)
O1—H10.8200C8—H80.9300
O2—C71.226 (2)C9—C101.317 (3)
N1—C71.344 (2)C9—H90.9300
N1—N21.373 (2)C10—C111.458 (3)
N1—H1A0.8600C10—H100.9300
N2—C81.278 (2)C11—C161.376 (3)
C1—C61.388 (3)C11—C121.383 (3)
C1—C21.395 (3)C12—C131.381 (3)
C2—C31.379 (3)C12—H120.9300
C2—C71.490 (3)C13—C141.361 (3)
C3—C41.370 (3)C13—H130.9300
C3—H30.9300C14—C151.362 (3)
C4—C51.371 (3)C14—H140.9300
C4—H40.9300C15—C161.378 (3)
C5—C61.366 (3)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—H60.9300
C1—O1—H1109.5N2—C8—H8119.6
C7—N1—N2118.73 (17)C9—C8—H8119.6
C7—N1—H1A120.6C10—C9—C8122.9 (2)
N2—N1—H1A120.6C10—C9—H9118.6
C8—N2—N1116.17 (17)C8—C9—H9118.6
O1—C1—C6120.93 (18)C9—C10—C11127.6 (2)
O1—C1—C2119.23 (18)C9—C10—H10116.2
C6—C1—C2119.8 (2)C11—C10—H10116.2
C3—C2—C1117.9 (2)C16—C11—C12117.0 (2)
C3—C2—C7116.66 (18)C16—C11—C10122.8 (2)
C1—C2—C7125.41 (19)C12—C11—C10120.2 (2)
C4—C3—C2122.2 (2)C13—C12—C11121.4 (2)
C4—C3—H3118.9C13—C12—H12119.3
C2—C3—H3118.9C11—C12—H12119.3
C3—C4—C5119.2 (2)C14—C13—C12120.4 (3)
C3—C4—H4120.4C14—C13—H13119.8
C5—C4—H4120.4C12—C13—H13119.8
C6—C5—C4120.5 (2)C13—C14—C15119.0 (3)
C6—C5—H5119.8C13—C14—H14120.5
C4—C5—H5119.8C15—C14—H14120.5
C5—C6—C1120.4 (2)C14—C15—C16120.8 (3)
C5—C6—H6119.8C14—C15—H15119.6
C1—C6—H6119.8C16—C15—H15119.6
O2—C7—N1121.0 (2)C11—C16—C15121.3 (2)
O2—C7—C2121.1 (2)C11—C16—H16119.3
N1—C7—C2117.84 (17)C15—C16—H16119.3
N2—C8—C9120.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.972.6348 (19)133
O1—H1···O2i0.822.102.804 (3)144
O1—H1···N2i0.822.363.057 (3)144
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H14N2O2
Mr266.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)4.8892 (6), 26.563 (3), 10.7367 (13)
β (°) 102.305 (2)
V3)1362.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.987, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
7141, 2395, 1354
Rint0.038
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.124, 1.05
No. of reflections2395
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.972.6348 (19)133.0
O1—H1···O2i0.8202.0992.804 (3)143.92
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y06-2-08).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAnderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toflund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.  CSD CrossRef Web of Science Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationMusie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803–5809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds