metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butane-1,4-di­ammonium bis­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)cadmate(II) dihydrate

aDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran, and bFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran
*Correspondence e-mail: tabatabaee45m@yahoo.com

(Received 27 August 2008; accepted 13 September 2008; online 20 September 2008)

In the title compound, (C4H14N2)[Cd(C7H3NO4)2]·2H2O, the CdII ion is coordinated by four O atoms [Cd—O = 2.2399 (17)–2.2493 (17) Å] and two N atoms [Cd—N = 2.3113 (15) and 2.3917 (15) Å] from two tridentate pyridine-2,6-dicarboxyl­ato ligands in a distorted octa­hedral geometry. The uncoordinated water mol­ecules are involved in O—H⋯O and N—H⋯O hydrogen bonds, which contribute to the formation of a three-dimensional supra­molecular structure, along with ππ stacking inter­actions [centroid–centroid distances of 3.5313 (13) and 3.6028 (11) Å between the pyridine rings of neighbouring dianions].

Related literature

For related literature, see: Aghabozorg, Firoozi et al. (2008[Aghabozorg, H., Firoozi, N., Roshan, L., Attar Gharamaleki, J. & Ghadermazi, M. (2008). Acta Cryst. E64, m743-m744.]); Aghabozorg, Manteghi et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Odoko et al. (2002[Odoko, M., Kusano, A. & Okabe, N. (2002). Acta Cryst. E58, m25-m27.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H14N2)[Cd(C7H3NO4)2]·2H2O

  • Mr = 568.81

  • Monoclinic, P 21 /c

  • a = 11.0357 (4) Å

  • b = 28.7181 (10) Å

  • c = 7.1116 (3) Å

  • β = 108.544 (1)°

  • V = 2136.82 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 100 (2) K

  • 0.28 × 0.07 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.802, Tmax = 0.944

  • 25988 measured reflections

  • 5676 independent reflections

  • 4655 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 0.99

  • 5676 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3NA⋯O2W 0.89 1.90 2.782 (2) 169
N3—H3NB⋯O7i 0.91 1.93 2.823 (2) 166
N3—H3NC⋯O4ii 0.90 1.93 2.784 (2) 159
N4—H4NA⋯O8ii 0.91 1.99 2.821 (3) 152
N4—H4NB⋯O6iii 0.94 1.93 2.865 (2) 176
N4—H4NC⋯O1Wiv 0.86 1.94 2.797 (2) 175
O1W—H1WA⋯O5iv 0.76 1.92 2.678 (2) 173
O1W—H1WB⋯O2 0.79 1.87 2.653 (2) 172
O2W—H2WA⋯O4v 0.82 1.99 2.809 (2) 175
O2W—H2WB⋯O1W 0.82 1.97 2.781 (2) 170
Symmetry codes: (i) x-1, y, z; (ii) x-1, y, z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{3\over 2}}]; (iv) x, y, z+1; (v) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Our research group has recently focused on a one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes. In connection with this research area, pyridine2,6-dicarboxylic acid (pydcH2) has been selected as a proton donor and different amines as acceptor agents, and several metal complexes of these systems have been synthesized and their X-ray crystal structures reported (Aghabozorg, Firoozi et al., 2008; Aghabozorg, Manteghi et al., 2008). The major intermolecular interactions that are required in the preparation of supramolecular metal complexes have been present in most of these complexes. In order to develop novel systems, we report here a new complex of CdII with butane-1,4-diammonium pyridine-2,6-dicarboxylato as a proton transfer compound.

The title compound, I, consists of [Cd(pydc)2]2- anion (pydcH2= pyridine-2,6-dicarboxylic acid), (bdaH2)2+ cation (bda=butane-1,4-diamine) and two uncoordinated water molecules (Fig. 1). CdII atom is six-coordinated by the four O and two N atoms from two (pydc)2- ligands. The coordinating bond lengths (Cd—N 2.2399 (17) and 2.2493 (17) Å, and Cd—O 2.3113 (15), 2.3370 (15), 2.3433 (14) and 2.3917 (15) Å) lie in the normal ranges corresponding to those in realated complexes of CdII containing pyridine-2,6-dicarboxylate as a ligand (Odoko et al., 2002). The bond lengths and bond angles around of metal center indicate that the geometric arrangement of six donor atoms around the CdII atom is distorted octahedral.

The N1—Cd1—N2 angle (170.36 (6)°) deviates slightly from linearity. The O1–Cd1–O5 and O3–Cd1–O7 bond angles and O1–Cd1–O5—C13 and O1–Cd1–O7—C14 torsion angles are 89.41 (6)°, 94.81 (5)°, -101.88 (14)° and 105.15 (14)°, respectively, indicating that two dianionic(pydc)2– fragments are almost perpendicular to each other.The bond angles O1–Cd1–O3 [141.50 (5)°] and O5–Cd1–O7 [141.06 (5)°] indicate that the four carboxylate groups of the two dianions are oriented in a flattened tetrahedral arrangement around the CdIIatom.

In the crystal, there are O—H···O and N—H···O hydrogen bonding interactions between the cations, anions and uncoordinated water molecules (Table 1). The water molecules acts also as bridging agents and link the cations to anions via hydrogen bonds (Fig. 1) and therefore, the spaces between two layers of [Cd(pydc)2]2– anions are filled with (badH2)2+ cations and water molecules. There are also π-π stacking interactions (Fig. 2) between the aromatic rings of the coordinated (pydc)2- anions proved by short distances Cg1···Cg1(1-x,2-y,-z) of 3.5313 (13) Å (Cg1 is a centroid of N1/C2—C5), and Cg2···Cg2(x,3/2-y,1/2+z) of 3.6028 (11) Å (Cg2 is a centroid of N2/C8—C12). Ion pairing, hydrogen bonding and ππ stacking interactions stabilize the crystal packing.

Related literature top

For related literature, see: Aghabozorg, Firoozi et al. (2008); Aghabozorg, Manteghi et al. (2008); Odoko et al. (2002).

Experimental top

A mixture of an aqueous solution (30 ml) of the proton transfer compound (bdaH2)(pydc) (100 mg, 0.4 mmol) and cadmium(II) nitrate Cd(NO3)2. 4H2O, (60 mg, 0.2 mmol) were stirred at 0°C. Colorless crystals of the title compound were obtained after 2 months at room temperature.

Refinement top

C-bound H atoms were placed in calculated positions. Positions of N- and O-bound H atoms were found on a difference Fourier map. All hydrogen atoms were refined in riding model approximation, with Uiso(H) equal to 1.2 Ueq(C) and 1.5 Ueq(N, O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of I showing the atomic numbering, hydrogen bonds (dashed lines) and 50% displacement ellipsoids [symmetry codes: (A) x - 1,y,z; (B) x - 1,y,z + 1; C) x,-y + 3/2,z + 3/2; (D) x,y,z + 1; (E) -x + 1,-y + 2,-z].
[Figure 2] Fig. 2. A portion of the crystal packing showing the π-π stacking interactions between the aromatic rings of the pydc2– dianions as dashed lines.
Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6)cadmate(II) dihydrate top
Crystal data top
(C4H14N2)[Cd(C7H3NO4)2]·2H2OF(000) = 1152
Mr = 568.81Dx = 1.768 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6372 reflections
a = 11.0357 (4) Åθ = 2.8–32.1°
b = 28.7181 (10) ŵ = 1.09 mm1
c = 7.1116 (3) ÅT = 100 K
β = 108.544 (1)°Prism, colourless
V = 2136.82 (14) Å30.28 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX II CCD area detector
diffractometer
5676 independent reflections
Radiation source: fine-focus sealed tube4655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
phi and ω scansθmax = 29.0°, θmin = 2.0°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1515
Tmin = 0.802, Tmax = 0.944k = 3939
25988 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: mixed
wR(F2) = 0.066H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.2951P]
where P = (Fo2 + 2Fc2)/3
5676 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
(C4H14N2)[Cd(C7H3NO4)2]·2H2OV = 2136.82 (14) Å3
Mr = 568.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0357 (4) ŵ = 1.09 mm1
b = 28.7181 (10) ÅT = 100 K
c = 7.1116 (3) Å0.28 × 0.07 × 0.05 mm
β = 108.544 (1)°
Data collection top
Bruker SMART APEX II CCD area detector
diffractometer
5676 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
4655 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.944Rint = 0.044
25988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
5676 reflectionsΔρmin = 0.71 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.653305 (14)0.865460 (5)0.02554 (2)0.01027 (5)
O10.54740 (15)0.88396 (5)0.2485 (2)0.0163 (3)
O20.49107 (15)0.94185 (5)0.4137 (2)0.0177 (3)
O30.74579 (14)0.90014 (5)0.1942 (2)0.0133 (3)
O40.80812 (14)0.96709 (5)0.2947 (2)0.0148 (3)
O50.46311 (14)0.83512 (5)0.1895 (2)0.0130 (3)
O60.35049 (14)0.77036 (5)0.2989 (2)0.0134 (3)
O70.85227 (14)0.84106 (5)0.2568 (2)0.0135 (3)
O80.97512 (14)0.77840 (5)0.3736 (2)0.0140 (3)
N10.66045 (16)0.94278 (6)0.0692 (2)0.0107 (3)
N20.66196 (16)0.78722 (6)0.0372 (2)0.0094 (3)
C10.61249 (19)0.96095 (7)0.2039 (3)0.0106 (4)
C20.6181 (2)1.00835 (7)0.2422 (3)0.0130 (4)
H2A0.58631.02070.33810.016*
C30.6726 (2)1.03710 (7)0.1332 (3)0.0144 (4)
H3A0.67801.06900.15600.017*
C40.7193 (2)1.01781 (7)0.0105 (3)0.0137 (4)
H4A0.75461.03660.08610.016*
C50.71190 (19)0.96990 (7)0.0379 (3)0.0106 (4)
C60.5459 (2)0.92595 (7)0.2994 (3)0.0119 (4)
C70.75859 (19)0.94381 (7)0.1888 (3)0.0108 (4)
C80.56098 (19)0.76257 (7)0.0730 (3)0.0096 (4)
C90.5627 (2)0.71438 (7)0.0708 (3)0.0119 (4)
H9A0.49290.69750.14890.014*
C100.67082 (19)0.69158 (7)0.0503 (3)0.0120 (4)
H10A0.67380.65920.05530.014*
C110.7742 (2)0.71772 (7)0.1635 (3)0.0117 (4)
H11A0.84730.70320.24510.014*
C120.76656 (19)0.76590 (7)0.1527 (3)0.0100 (4)
C130.44812 (19)0.79128 (7)0.1984 (3)0.0106 (4)
C140.87469 (19)0.79762 (7)0.2713 (3)0.0108 (4)
N30.04463 (17)0.90758 (6)0.5575 (2)0.0125 (3)
H3NA0.00790.92210.50450.019*
H3NB0.08180.88340.47630.019*
H3NC0.10290.92780.57270.019*
N40.20003 (17)0.80268 (6)1.2890 (3)0.0129 (4)
H4NA0.14770.79161.35530.019*
H4NB0.25230.77911.26630.019*
H4NC0.24300.82601.35380.019*
C150.0263 (2)0.89086 (8)0.7619 (3)0.0140 (4)
H15B0.03450.87930.82380.017*
H15C0.07160.91690.84040.017*
C160.1212 (2)0.85258 (8)0.7631 (3)0.0131 (4)
H16B0.17770.86310.69150.016*
H16C0.07530.82550.69470.016*
C170.2010 (2)0.83878 (8)0.9735 (3)0.0137 (4)
H17A0.26230.81520.96710.016*
H17B0.24820.86571.04090.016*
C180.11864 (19)0.82013 (8)1.0923 (3)0.0130 (4)
H18A0.06320.84471.11100.016*
H18B0.06520.79501.01950.016*
O1W0.32860 (14)0.88159 (5)0.4844 (2)0.0142 (3)
H1WA0.36630.87040.58210.021*
H1WB0.37410.89900.45200.021*
O2W0.12203 (15)0.94242 (6)0.3694 (2)0.0211 (4)
H2WA0.14400.96920.35420.032*
H2WB0.18830.92730.40460.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01105 (8)0.00794 (7)0.01223 (8)0.00025 (6)0.00430 (5)0.00009 (6)
O10.0229 (8)0.0108 (7)0.0201 (8)0.0005 (6)0.0135 (7)0.0013 (6)
O20.0222 (8)0.0159 (8)0.0205 (8)0.0007 (6)0.0148 (7)0.0002 (6)
O30.0156 (7)0.0113 (7)0.0159 (7)0.0016 (6)0.0091 (6)0.0021 (6)
O40.0179 (8)0.0141 (8)0.0159 (7)0.0007 (6)0.0102 (6)0.0015 (6)
O50.0121 (7)0.0112 (7)0.0144 (7)0.0005 (6)0.0025 (6)0.0019 (6)
O60.0105 (7)0.0154 (8)0.0126 (7)0.0021 (6)0.0012 (6)0.0001 (6)
O70.0126 (7)0.0115 (7)0.0144 (7)0.0007 (6)0.0015 (6)0.0006 (6)
O80.0094 (7)0.0175 (8)0.0138 (7)0.0000 (6)0.0017 (6)0.0019 (6)
N10.0109 (8)0.0102 (8)0.0118 (8)0.0001 (6)0.0048 (7)0.0001 (6)
N20.0100 (8)0.0106 (8)0.0079 (8)0.0002 (6)0.0033 (6)0.0012 (6)
C10.0101 (9)0.0128 (10)0.0089 (9)0.0011 (8)0.0030 (7)0.0005 (8)
C20.0135 (10)0.0135 (10)0.0126 (10)0.0012 (8)0.0051 (8)0.0041 (8)
C30.0179 (11)0.0110 (10)0.0161 (10)0.0017 (8)0.0080 (8)0.0017 (8)
C40.0141 (10)0.0130 (10)0.0152 (10)0.0025 (8)0.0062 (8)0.0007 (8)
C50.0095 (9)0.0122 (10)0.0108 (9)0.0000 (7)0.0042 (7)0.0006 (7)
C60.0134 (10)0.0120 (10)0.0100 (9)0.0006 (8)0.0034 (8)0.0029 (8)
C70.0094 (9)0.0116 (10)0.0115 (9)0.0002 (7)0.0035 (8)0.0013 (7)
C80.0099 (10)0.0123 (10)0.0082 (9)0.0004 (7)0.0050 (7)0.0016 (7)
C90.0138 (10)0.0121 (10)0.0110 (9)0.0015 (8)0.0059 (8)0.0005 (8)
C100.0160 (11)0.0092 (9)0.0122 (10)0.0005 (8)0.0066 (8)0.0002 (7)
C110.0118 (10)0.0133 (10)0.0109 (9)0.0036 (8)0.0046 (8)0.0030 (8)
C120.0102 (9)0.0129 (10)0.0078 (9)0.0002 (7)0.0040 (7)0.0006 (7)
C130.0104 (10)0.0134 (10)0.0091 (9)0.0009 (8)0.0045 (8)0.0013 (7)
C140.0111 (10)0.0135 (10)0.0091 (9)0.0017 (8)0.0050 (8)0.0005 (7)
N30.0126 (8)0.0126 (9)0.0126 (8)0.0006 (7)0.0046 (7)0.0000 (7)
N40.0126 (9)0.0141 (9)0.0121 (8)0.0005 (7)0.0042 (7)0.0002 (7)
C150.0133 (10)0.0181 (11)0.0108 (10)0.0004 (8)0.0042 (8)0.0019 (8)
C160.0122 (10)0.0155 (10)0.0126 (10)0.0012 (8)0.0054 (8)0.0010 (8)
C170.0121 (10)0.0159 (11)0.0143 (10)0.0014 (8)0.0058 (8)0.0010 (8)
C180.0093 (10)0.0171 (11)0.0119 (10)0.0001 (8)0.0023 (8)0.0018 (8)
O1W0.0137 (8)0.0153 (7)0.0135 (7)0.0005 (6)0.0044 (6)0.0037 (6)
O2W0.0187 (8)0.0174 (8)0.0304 (9)0.0010 (6)0.0123 (7)0.0074 (7)
Geometric parameters (Å, º) top
Cd1—N12.2399 (17)C9—H9A0.9300
Cd1—N22.2493 (17)C10—C111.388 (3)
Cd1—O12.3113 (15)C10—H10A0.9300
Cd1—O52.3370 (15)C11—C121.387 (3)
Cd1—O32.3433 (14)C11—H11A0.9300
Cd1—O72.3917 (15)C12—C141.525 (3)
O1—C61.261 (3)N3—C151.494 (3)
O2—C61.244 (3)N3—H3NA0.8893
O3—C71.262 (2)N3—H3NB0.9137
O4—C71.255 (2)N3—H3NC0.8970
O5—C131.269 (2)N4—C181.488 (3)
O6—C131.242 (2)N4—H4NA0.9110
O7—C141.269 (2)N4—H4NB0.9372
O8—C141.245 (2)N4—H4NC0.8628
N1—C51.336 (3)C15—C161.517 (3)
N1—C11.339 (3)C15—H15B0.9700
N2—C121.334 (3)C15—H15C0.9700
N2—C81.342 (3)C16—C171.528 (3)
C1—C21.386 (3)C16—H16B0.9700
C1—C61.526 (3)C16—H16C0.9700
C2—C31.394 (3)C17—C181.521 (3)
C2—H2A0.9300C17—H17A0.9700
C3—C41.397 (3)C17—H17B0.9700
C3—H3A0.9300C18—H18A0.9700
C4—C51.388 (3)C18—H18B0.9700
C4—H4A0.9300O1W—H1WA0.7580
C5—C71.526 (3)O1W—H1WB0.7927
C8—C91.384 (3)O2W—H2WA0.8246
C8—C131.523 (3)O2W—H2WB0.8183
C9—C101.393 (3)
N1—Cd1—N2170.37 (6)C11—C10—H10A120.4
N1—Cd1—O171.35 (6)C9—C10—H10A120.4
N2—Cd1—O1103.25 (6)C12—C11—C10118.90 (19)
N1—Cd1—O5116.42 (6)C12—C11—H11A120.5
N2—Cd1—O570.76 (5)C10—C11—H11A120.5
O1—Cd1—O589.41 (6)N2—C12—C11121.14 (19)
N1—Cd1—O370.59 (6)N2—C12—C14115.98 (18)
N2—Cd1—O3115.25 (5)C11—C12—C14122.87 (18)
O1—Cd1—O3141.50 (5)O6—C13—O5125.73 (19)
O5—Cd1—O3102.30 (5)O6—C13—C8118.25 (18)
N1—Cd1—O7102.18 (6)O5—C13—C8116.01 (17)
N2—Cd1—O770.31 (5)O8—C14—O7126.69 (19)
O1—Cd1—O798.60 (5)O8—C14—C12116.93 (18)
O5—Cd1—O7141.06 (5)O7—C14—C12116.37 (18)
O3—Cd1—O794.81 (5)C15—N3—H3NA110.6
C6—O1—Cd1118.20 (13)C15—N3—H3NB111.2
C7—O3—Cd1118.05 (12)H3NA—N3—H3NB108.0
C13—O5—Cd1118.57 (13)C15—N3—H3NC105.3
C14—O7—Cd1117.15 (13)H3NA—N3—H3NC109.7
C5—N1—C1121.14 (18)H3NB—N3—H3NC111.9
C5—N1—Cd1120.09 (14)C18—N4—H4NA108.1
C1—N1—Cd1118.76 (13)C18—N4—H4NB107.6
C12—N2—C8120.84 (18)H4NA—N4—H4NB111.3
C12—N2—Cd1119.97 (13)C18—N4—H4NC107.8
C8—N2—Cd1119.19 (13)H4NA—N4—H4NC108.9
N1—C1—C2121.36 (19)H4NB—N4—H4NC112.9
N1—C1—C6114.67 (18)N3—C15—C16112.65 (17)
C2—C1—C6123.87 (18)N3—C15—H15B109.1
C1—C2—C3118.22 (19)C16—C15—H15B109.1
C1—C2—H2A120.9N3—C15—H15C109.1
C3—C2—H2A120.9C16—C15—H15C109.1
C2—C3—C4119.8 (2)H15B—C15—H15C107.8
C2—C3—H3A120.1C15—C16—C17112.01 (17)
C4—C3—H3A120.1C15—C16—H16B109.2
C5—C4—C3118.46 (19)C17—C16—H16B109.2
C5—C4—H4A120.8C15—C16—H16C109.2
C3—C4—H4A120.8C17—C16—H16C109.2
N1—C5—C4120.96 (19)H16B—C16—H16C107.9
N1—C5—C7114.49 (18)C18—C17—C16112.08 (17)
C4—C5—C7124.55 (18)C18—C17—H17A109.2
O2—C6—O1126.3 (2)C16—C17—H17A109.2
O2—C6—C1116.86 (18)C18—C17—H17B109.2
O1—C6—C1116.76 (18)C16—C17—H17B109.2
O4—C7—O3125.23 (19)H17A—C17—H17B107.9
O4—C7—C5118.00 (18)N4—C18—C17110.61 (17)
O3—C7—C5116.76 (17)N4—C18—H18A109.5
N2—C8—C9120.98 (18)C17—C18—H18A109.5
N2—C8—C13115.40 (17)N4—C18—H18B109.5
C9—C8—C13123.63 (18)C17—C18—H18B109.5
C8—C9—C10118.89 (19)H18A—C18—H18B108.1
C8—C9—H9A120.6H1WA—O1W—H1WB108.6
C10—C9—H9A120.6H2WA—O2W—H2WB105.3
C11—C10—C9119.24 (19)
N1—Cd1—O1—C63.07 (15)C1—N1—C5—C7178.33 (17)
N2—Cd1—O1—C6168.63 (15)Cd1—N1—C5—C71.7 (2)
O5—Cd1—O1—C6121.31 (16)C3—C4—C5—N10.5 (3)
O3—Cd1—O1—C612.1 (2)C3—C4—C5—C7179.94 (19)
O7—Cd1—O1—C696.96 (16)Cd1—O1—C6—O2178.27 (17)
N1—Cd1—O3—C70.66 (14)Cd1—O1—C6—C11.3 (2)
N2—Cd1—O3—C7171.05 (14)N1—C1—C6—O2174.47 (18)
O1—Cd1—O3—C79.71 (18)C2—C1—C6—O22.0 (3)
O5—Cd1—O3—C7114.61 (14)N1—C1—C6—O12.8 (3)
O7—Cd1—O3—C7100.58 (14)C2—C1—C6—O1179.3 (2)
N1—Cd1—O5—C13170.64 (14)Cd1—O3—C7—O4178.78 (16)
N2—Cd1—O5—C132.38 (14)Cd1—O3—C7—C50.0 (2)
O1—Cd1—O5—C13101.88 (14)N1—C5—C7—O4179.97 (18)
O3—Cd1—O5—C13115.11 (14)C4—C5—C7—O40.6 (3)
O7—Cd1—O5—C131.14 (18)N1—C5—C7—O31.1 (3)
N1—Cd1—O7—C14177.80 (14)C4—C5—C7—O3179.49 (19)
N2—Cd1—O7—C144.07 (14)C12—N2—C8—C90.4 (3)
O1—Cd1—O7—C14105.15 (14)Cd1—N2—C8—C9179.68 (14)
O5—Cd1—O7—C145.33 (18)C12—N2—C8—C13179.87 (17)
O3—Cd1—O7—C14111.05 (14)Cd1—N2—C8—C130.2 (2)
O1—Cd1—N1—C5175.36 (16)N2—C8—C9—C100.9 (3)
O5—Cd1—N1—C595.72 (15)C13—C8—C9—C10179.67 (18)
O3—Cd1—N1—C51.29 (14)C8—C9—C10—C110.7 (3)
O7—Cd1—N1—C589.55 (15)C9—C10—C11—C120.1 (3)
O1—Cd1—N1—C14.68 (14)C8—N2—C12—C110.3 (3)
O5—Cd1—N1—C184.32 (15)Cd1—N2—C12—C11179.66 (14)
O3—Cd1—N1—C1178.74 (16)C8—N2—C12—C14179.80 (17)
O7—Cd1—N1—C190.41 (15)Cd1—N2—C12—C140.1 (2)
O1—Cd1—N2—C1296.51 (15)C10—C11—C12—N20.4 (3)
O5—Cd1—N2—C12178.85 (16)C10—C11—C12—C14179.90 (18)
O3—Cd1—N2—C1283.98 (15)Cd1—O5—C13—O6176.78 (16)
O7—Cd1—N2—C121.98 (14)Cd1—O5—C13—C83.1 (2)
O1—Cd1—N2—C883.43 (15)N2—C8—C13—O6177.92 (17)
O5—Cd1—N2—C81.21 (13)C9—C8—C13—O62.6 (3)
O3—Cd1—N2—C896.08 (14)N2—C8—C13—O51.9 (3)
O7—Cd1—N2—C8177.96 (16)C9—C8—C13—O5177.53 (19)
C5—N1—C1—C22.2 (3)Cd1—O7—C14—O8175.41 (16)
Cd1—N1—C1—C2177.80 (15)Cd1—O7—C14—C125.4 (2)
C5—N1—C1—C6174.40 (18)N2—C12—C14—O8177.06 (17)
Cd1—N1—C1—C65.6 (2)C11—C12—C14—O83.4 (3)
N1—C1—C2—C31.4 (3)N2—C12—C14—O73.6 (3)
C6—C1—C2—C3174.79 (19)C11—C12—C14—O7175.88 (19)
C1—C2—C3—C40.2 (3)N3—C15—C16—C17175.10 (17)
C2—C3—C4—C51.2 (3)C15—C16—C17—C1861.0 (2)
C1—N1—C5—C41.1 (3)C16—C17—C18—N4174.37 (17)
Cd1—N1—C5—C4178.82 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3NA···O2W0.891.902.782 (2)169
N3—H3NB···O7i0.911.932.823 (2)166
N3—H3NC···O4ii0.901.932.784 (2)159
N4—H4NA···O8ii0.911.992.821 (3)152
N4—H4NB···O6iii0.941.932.865 (2)176
N4—H4NC···O1Wiv0.861.942.797 (2)175
O1W—H1WA···O5iv0.761.922.678 (2)173
O1W—H1WB···O20.791.872.653 (2)172
O2W—H2WA···O4v0.821.992.809 (2)175
O2W—H2WB···O1W0.821.972.781 (2)170
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x, y+3/2, z+3/2; (iv) x, y, z+1; (v) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula(C4H14N2)[Cd(C7H3NO4)2]·2H2O
Mr568.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.0357 (4), 28.7181 (10), 7.1116 (3)
β (°) 108.544 (1)
V3)2136.82 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.28 × 0.07 × 0.05
Data collection
DiffractometerBruker SMART APEX II CCD area detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.802, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
25988, 5676, 4655
Rint0.044
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.00
No. of reflections5676
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.71

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3NA···O2W0.891.902.782 (2)169
N3—H3NB···O7i0.911.932.823 (2)166
N3—H3NC···O4ii0.901.932.784 (2)159
N4—H4NA···O8ii0.911.992.821 (3)152
N4—H4NB···O6iii0.941.932.865 (2)176
N4—H4NC···O1Wiv0.861.942.797 (2)175
O1W—H1WA···O5iv0.761.922.678 (2)173
O1W—H1WB···O20.791.872.653 (2)172
O2W—H2WA···O4v0.821.992.809 (2)175
O2W—H2WB···O1W0.821.972.781 (2)170
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x, y+3/2, z+3/2; (iv) x, y, z+1; (v) x+1, y+2, z.
 

References

First citationAghabozorg, H., Firoozi, N., Roshan, L., Attar Gharamaleki, J. & Ghadermazi, M. (2008). Acta Cryst. E64, m743–m744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOdoko, M., Kusano, A. & Okabe, N. (2002). Acta Cryst. E58, m25–m27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds