organic compounds
L-Argininium ethyl sulfate
aMolecule Structure Research Center, National Academy of Sciences RA, Azatutyan ave. 26, 375014 Yerevan, Republic of Armenia
*Correspondence e-mail: harkar@nfsat.am
The title compound, C6H15N4O2+·C2H5O4S−, exhibits nonlinear optical properties. An extensive hydrogen-bonding network [N⋯O = 2.786 (4)–3.196 (5) Å] links cations and anions into a three-dimensional structure.
Related literature
For crystal structures and nonlinear optical properties of related compounds, see: Monaco et al. (1987); Petrosyan et al. (2000). For details of the synthesis, see: Petrosyan (2005).
Experimental
Crystal data
|
Data collection
|
Data collection: DATCOL in CAD-4 Manual (Enraf–Nonius, 1988); cell LS in CAD-4 Manual; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808029954/cv2443sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808029954/cv2443Isup2.hkl
The single crystals of (I) were obtained by slow evaporation of the aqueous solution of exchange reaction product described by Petrosyan (2005):
L-Arg × HBF4 + KC2H5SO4 → L-Arg × HC2H5SO4 + KBF4.
All H atoms were placed in geometrically calculated positions (C—H 0.96-0.98 Å, N—H 0.86-0.89 Å) and included in the
in a riding model approximation, with Uiso(H)= 1.5Ueq (of Me- and N+H3 groups) and 1.2Ueq (other carrier atoms). High values of Ueq of some ethylsulforic anion atoms, except S, as compared to the other atoms of the structure, demonstrate potential thermal motion (rotation) of this group around the relatively heavy S atom.Data collection: DATCOL in CAD-4 Manual (Enraf–Nonius, 1988); cell
LS in CAD-4 Manual (Enraf–Nonius, 1988); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A perspective view of the asymmetric unit of (I) showing the atomic numbering and displacement ellipsoids at the 50% probability level. |
C6H15N4O2+·C2H5O4S− | F(000) = 640 |
Mr = 300.34 | Dx = 1.387 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 24 reflections |
a = 9.1504 (18) Å | θ = 14–16° |
b = 12.519 (3) Å | µ = 0.25 mm−1 |
c = 12.551 (3) Å | T = 293 K |
V = 1437.8 (5) Å3 | Block, colourless |
Z = 4 | 0.26 × 0.22 × 0.14 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.062 |
Radiation source: fine-focus sealed tube | θmax = 30.0°, θmin = 2.3° |
Graphite monochromator | h = 0→12 |
ω/2θ scans | k = 0→17 |
4566 measured reflections | l = −17→17 |
4171 independent reflections | 3 standard reflections every 400 reflections |
3091 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.072 | w = 1/[σ2(Fo2) + (0.0927P)2 + 1.2922P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.202 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.74 e Å−3 |
4171 reflections | Δρmin = −0.59 e Å−3 |
175 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.007 (2) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1775 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.05 (16) |
C6H15N4O2+·C2H5O4S− | V = 1437.8 (5) Å3 |
Mr = 300.34 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.1504 (18) Å | µ = 0.25 mm−1 |
b = 12.519 (3) Å | T = 293 K |
c = 12.551 (3) Å | 0.26 × 0.22 × 0.14 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.062 |
4566 measured reflections | 3 standard reflections every 400 reflections |
4171 independent reflections | intensity decay: none |
3091 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.072 | H-atom parameters constrained |
wR(F2) = 0.202 | Δρmax = 0.74 e Å−3 |
S = 1.03 | Δρmin = −0.59 e Å−3 |
4171 reflections | Absolute structure: Flack (1983), 1775 Friedel pairs |
175 parameters | Absolute structure parameter: 0.05 (16) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.23564 (11) | 0.86276 (9) | 0.82316 (10) | 0.0575 (3) | |
O1 | 0.1060 (2) | 0.6386 (2) | 0.5342 (2) | 0.0447 (6) | |
O2 | 0.3427 (3) | 0.6749 (2) | 0.5555 (3) | 0.0541 (8) | |
O3 | 0.3324 (5) | 0.7594 (3) | 0.8318 (5) | 0.126 (2) | |
O4 | 0.0977 (4) | 0.8395 (4) | 0.7810 (5) | 0.114 (2) | |
O5 | 0.3241 (6) | 0.9208 (6) | 0.7447 (3) | 0.126 (2) | |
O6 | 0.2501 (5) | 0.9140 (2) | 0.9236 (3) | 0.0755 (11) | |
N1 | 0.3133 (3) | 0.8825 (2) | 0.5232 (2) | 0.0331 (5) | |
H1A | 0.3969 | 0.8533 | 0.5017 | 0.050* | |
H1B | 0.3140 | 0.8890 | 0.5938 | 0.050* | |
H1C | 0.3032 | 0.9467 | 0.4937 | 0.050* | |
N2 | 0.1657 (4) | 0.7002 (3) | 0.1525 (2) | 0.0450 (7) | |
H2 | 0.0751 | 0.7186 | 0.1518 | 0.054* | |
N3 | 0.0934 (4) | 0.5395 (3) | 0.0841 (3) | 0.0531 (9) | |
H3A | 0.1139 | 0.4759 | 0.0629 | 0.064* | |
H3B | 0.0051 | 0.5627 | 0.0803 | 0.064* | |
N4 | 0.3325 (4) | 0.5638 (3) | 0.1274 (3) | 0.0519 (9) | |
H4A | 0.4024 | 0.6035 | 0.1505 | 0.062* | |
H4B | 0.3503 | 0.4994 | 0.1074 | 0.062* | |
C1 | 0.2151 (3) | 0.6992 (3) | 0.5313 (3) | 0.0340 (6) | |
C2 | 0.1889 (3) | 0.8130 (2) | 0.4905 (2) | 0.0296 (6) | |
H1 | 0.0993 | 0.8406 | 0.5233 | 0.036* | |
C3 | 0.1696 (3) | 0.8141 (3) | 0.3697 (2) | 0.0332 (6) | |
H3C | 0.0883 | 0.7678 | 0.3515 | 0.040* | |
H3D | 0.1437 | 0.8860 | 0.3479 | 0.040* | |
C4 | 0.3030 (4) | 0.7788 (3) | 0.3057 (3) | 0.0392 (7) | |
H4C | 0.3842 | 0.8262 | 0.3209 | 0.047* | |
H4D | 0.3309 | 0.7072 | 0.3272 | 0.047* | |
C5 | 0.2713 (4) | 0.7799 (3) | 0.1865 (3) | 0.0408 (7) | |
H5A | 0.2353 | 0.8501 | 0.1670 | 0.049* | |
H5B | 0.3621 | 0.7683 | 0.1483 | 0.049* | |
C6 | 0.1980 (4) | 0.6018 (3) | 0.1226 (3) | 0.0400 (8) | |
C7 | 0.2636 (9) | 0.6578 (5) | 0.8418 (6) | 0.100 (2) | |
H7A | 0.2037 | 0.6434 | 0.7797 | 0.120* | |
H7B | 0.2012 | 0.6567 | 0.9043 | 0.120* | |
C8 | 0.3784 (9) | 0.5765 (5) | 0.8517 (5) | 0.098 (2) | |
H8A | 0.4249 | 0.5665 | 0.7838 | 0.147* | |
H8B | 0.3359 | 0.5103 | 0.8747 | 0.147* | |
H8C | 0.4496 | 0.5996 | 0.9029 | 0.147* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0378 (5) | 0.0573 (6) | 0.0773 (7) | 0.0002 (4) | 0.0002 (4) | −0.0298 (5) |
O1 | 0.0284 (11) | 0.0372 (12) | 0.0686 (17) | −0.0036 (10) | −0.0039 (11) | 0.0095 (12) |
O2 | 0.0285 (12) | 0.0425 (14) | 0.091 (2) | −0.0015 (10) | −0.0121 (13) | 0.0221 (14) |
O3 | 0.067 (2) | 0.070 (3) | 0.241 (7) | 0.014 (2) | −0.018 (3) | −0.067 (4) |
O4 | 0.0435 (17) | 0.094 (3) | 0.205 (6) | 0.0008 (19) | −0.016 (3) | −0.055 (3) |
O5 | 0.103 (3) | 0.213 (6) | 0.061 (2) | −0.050 (4) | 0.017 (2) | −0.028 (3) |
O6 | 0.121 (3) | 0.0484 (15) | 0.0577 (17) | 0.006 (2) | 0.017 (2) | −0.0105 (14) |
N1 | 0.0310 (12) | 0.0337 (13) | 0.0347 (12) | 0.0004 (10) | −0.0024 (10) | −0.0021 (10) |
N2 | 0.0364 (15) | 0.0459 (16) | 0.0528 (17) | 0.0022 (13) | 0.0005 (13) | −0.0137 (14) |
N3 | 0.0346 (15) | 0.0485 (17) | 0.076 (2) | −0.0008 (13) | −0.0013 (16) | −0.0241 (17) |
N4 | 0.0336 (15) | 0.0494 (18) | 0.073 (2) | 0.0035 (13) | −0.0012 (15) | −0.0241 (17) |
C1 | 0.0281 (14) | 0.0341 (14) | 0.0396 (15) | 0.0023 (12) | 0.0025 (12) | 0.0055 (12) |
C2 | 0.0214 (11) | 0.0297 (13) | 0.0377 (15) | 0.0021 (10) | 0.0025 (11) | 0.0017 (12) |
C3 | 0.0285 (13) | 0.0346 (15) | 0.0364 (14) | 0.0024 (12) | 0.0006 (12) | 0.0001 (12) |
C4 | 0.0299 (15) | 0.0458 (17) | 0.0421 (17) | −0.0007 (13) | 0.0029 (13) | −0.0074 (14) |
C5 | 0.0439 (18) | 0.0385 (16) | 0.0401 (17) | −0.0027 (14) | 0.0093 (15) | −0.0078 (13) |
C6 | 0.0355 (17) | 0.0437 (18) | 0.0406 (17) | −0.0023 (14) | 0.0059 (14) | −0.0087 (14) |
C7 | 0.118 (6) | 0.072 (4) | 0.111 (5) | −0.010 (4) | 0.000 (4) | 0.032 (3) |
C8 | 0.153 (7) | 0.057 (3) | 0.084 (4) | 0.005 (4) | 0.022 (4) | 0.002 (3) |
S1—O4 | 1.399 (4) | N4—H4B | 0.8600 |
S1—O6 | 1.421 (3) | C1—C2 | 1.533 (4) |
S1—O5 | 1.468 (5) | C2—C3 | 1.527 (4) |
S1—O3 | 1.571 (4) | C2—H1 | 0.9800 |
O1—C1 | 1.255 (4) | C3—C4 | 1.526 (4) |
O2—C1 | 1.244 (4) | C3—H3C | 0.9700 |
O3—C7 | 1.426 (7) | C3—H3D | 0.9700 |
N1—C2 | 1.490 (4) | C4—C5 | 1.524 (5) |
N1—H1A | 0.8900 | C4—H4C | 0.9700 |
N1—H1B | 0.8900 | C4—H4D | 0.9700 |
N1—H1C | 0.8900 | C5—H5A | 0.9700 |
N2—C6 | 1.322 (5) | C5—H5B | 0.9700 |
N2—C5 | 1.453 (5) | C7—C8 | 1.467 (9) |
N2—H2 | 0.8600 | C7—H7A | 0.9700 |
N3—C6 | 1.326 (5) | C7—H7B | 0.9700 |
N3—H3A | 0.8600 | C8—H8A | 0.9600 |
N3—H3B | 0.8600 | C8—H8B | 0.9600 |
N4—C6 | 1.321 (5) | C8—H8C | 0.9600 |
N4—H4A | 0.8600 | ||
O4—S1—O6 | 120.9 (3) | C4—C3—H3C | 108.4 |
O4—S1—O5 | 110.3 (3) | C2—C3—H3C | 108.4 |
O6—S1—O5 | 108.7 (3) | C4—C3—H3D | 108.4 |
O4—S1—O3 | 111.3 (3) | C2—C3—H3D | 108.4 |
O6—S1—O3 | 105.0 (3) | H3C—C3—H3D | 107.5 |
O5—S1—O3 | 98.2 (4) | C5—C4—C3 | 111.2 (3) |
C7—O3—S1 | 119.5 (4) | C5—C4—H4C | 109.4 |
C2—N1—H1A | 109.5 | C3—C4—H4C | 109.4 |
C2—N1—H1B | 109.5 | C5—C4—H4D | 109.4 |
H1A—N1—H1B | 109.5 | C3—C4—H4D | 109.4 |
C2—N1—H1C | 109.5 | H4C—C4—H4D | 108.0 |
H1A—N1—H1C | 109.5 | N2—C5—C4 | 114.1 (3) |
H1B—N1—H1C | 109.5 | N2—C5—H5A | 108.7 |
C6—N2—C5 | 125.1 (3) | C4—C5—H5A | 108.7 |
C6—N2—H2 | 117.5 | N2—C5—H5B | 108.7 |
C5—N2—H2 | 117.5 | C4—C5—H5B | 108.7 |
C6—N3—H3A | 120.0 | H5A—C5—H5B | 107.6 |
C6—N3—H3B | 120.0 | N4—C6—N2 | 122.1 (3) |
H3A—N3—H3B | 120.0 | N4—C6—N3 | 118.5 (3) |
C6—N4—H4A | 120.0 | N2—C6—N3 | 119.4 (3) |
C6—N4—H4B | 120.0 | O3—C7—C8 | 108.1 (6) |
H4A—N4—H4B | 120.0 | O3—C7—H7A | 110.1 |
O2—C1—O1 | 126.3 (3) | C8—C7—H7A | 110.1 |
O2—C1—C2 | 117.1 (3) | O3—C7—H7B | 110.1 |
O1—C1—C2 | 116.6 (3) | C8—C7—H7B | 110.1 |
N1—C2—C3 | 110.9 (2) | H7A—C7—H7B | 108.4 |
N1—C2—C1 | 109.3 (2) | C7—C8—H8A | 109.5 |
C3—C2—C1 | 111.0 (3) | C7—C8—H8B | 109.5 |
N1—C2—H1 | 108.5 | H8A—C8—H8B | 109.5 |
C3—C2—H1 | 108.5 | C7—C8—H8C | 109.5 |
C1—C2—H1 | 108.5 | H8A—C8—H8C | 109.5 |
C4—C3—C2 | 115.3 (3) | H8B—C8—H8C | 109.5 |
O4—S1—O3—C7 | −25.9 (8) | C1—C2—C3—C4 | −63.9 (3) |
O6—S1—O3—C7 | 106.5 (6) | C2—C3—C4—C5 | 178.5 (3) |
O5—S1—O3—C7 | −141.5 (6) | C6—N2—C5—C4 | −89.4 (4) |
O2—C1—C2—N1 | −19.4 (4) | C3—C4—C5—N2 | −67.5 (4) |
O1—C1—C2—N1 | 162.5 (3) | C5—N2—C6—N4 | 4.4 (6) |
O2—C1—C2—C3 | 103.2 (4) | C5—N2—C6—N3 | −173.9 (3) |
O1—C1—C2—C3 | −74.9 (4) | S1—O3—C7—C8 | −178.3 (5) |
N1—C2—C3—C4 | 57.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O5 | 0.89 | 1.94 | 2.823 (5) | 173 |
N1—H1C···O6i | 0.89 | 2.01 | 2.896 (4) | 172 |
N1—H1A···O1ii | 0.89 | 1.97 | 2.786 (4) | 152 |
N2—H2···O3iii | 0.86 | 2.25 | 3.098 (6) | 170 |
N3—H3B···O6iii | 0.86 | 2.35 | 3.196 (5) | 167 |
N3—H3A···O2iv | 0.86 | 1.93 | 2.771 (4) | 165 |
N4—H4B···O1iv | 0.86 | 2.00 | 2.847 (4) | 170 |
N4—H4A···O4ii | 0.86 | 2.11 | 2.945 (5) | 165 |
Symmetry codes: (i) −x+1/2, −y+2, z−1/2; (ii) x+1/2, −y+3/2, −z+1; (iii) x−1/2, −y+3/2, −z+1; (iv) −x+1/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H15N4O2+·C2H5O4S− |
Mr | 300.34 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 9.1504 (18), 12.519 (3), 12.551 (3) |
V (Å3) | 1437.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.26 × 0.22 × 0.14 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4566, 4171, 3091 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.202, 1.03 |
No. of reflections | 4171 |
No. of parameters | 175 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −0.59 |
Absolute structure | Flack (1983), 1775 Friedel pairs |
Absolute structure parameter | 0.05 (16) |
Computer programs: DATCOL in CAD-4 Manual (Enraf–Nonius, 1988), LS in CAD-4 Manual (Enraf–Nonius, 1988), HELENA (Spek, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O5 | 0.89 | 1.94 | 2.823 (5) | 172.9 |
N1—H1C···O6i | 0.89 | 2.01 | 2.896 (4) | 171.7 |
N1—H1A···O1ii | 0.89 | 1.97 | 2.786 (4) | 152.1 |
N2—H2···O3iii | 0.86 | 2.25 | 3.098 (6) | 169.7 |
N3—H3B···O6iii | 0.86 | 2.35 | 3.196 (5) | 167.2 |
N3—H3A···O2iv | 0.86 | 1.93 | 2.771 (4) | 164.7 |
N4—H4B···O1iv | 0.86 | 2.00 | 2.847 (4) | 169.5 |
N4—H4A···O4ii | 0.86 | 2.11 | 2.945 (5) | 164.5 |
Symmetry codes: (i) −x+1/2, −y+2, z−1/2; (ii) x+1/2, −y+3/2, −z+1; (iii) x−1/2, −y+3/2, −z+1; (iv) −x+1/2, −y+1, z−1/2. |
Acknowledgements
The author expresses his thanks to Dr A. M. Petrosyan for providing the crystals and for valuable discussion of the results. This work was supported by US CRDF grant No. AE2-2533-YE-03.
References
Enraf–Nonius (1988). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Monaco, S. B., Davis, L. E., Velsko, S. P., Wang, F. T., Eimerl, D. & Zalkin, A. (1987). J. Cryst. Growth, 85, 252–257. CSD CrossRef CAS Web of Science Google Scholar
Petrosyan, A. M. (2005). Proceedings of Conference on Laser Physics 2005, 11–14 October 2005, Ashtarak, Armenia, pp. 123–126. Google Scholar
Petrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Terzyan, S. S. & Feigelson, R. S. (2000). J. Cryst. Growth, 213, 103–257. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In a search of analogs of the L-arginine phosphate (LAP) a large number of new materials [Monaco et al., 1987, Petrosyan et al., 2000] have been obtained by the interaction of L-arginine with various acids by choosing appropriate conditions. The crystals from the interaction of L-arginine with H2SO4 could not be obtained due to extremely high solubility of reaction product (Petrosyan, 2005). Nevertheless, the conditions for obtaining the crystals of L-arginine salt with ethylsulforic acid were found (Petrosyan, 2005).
We present herein a structural study of the L-argininium ethylsulfate, C6H15N4O2+.C2H5O4S-, (I). A view of the asymmetric unit is shown in Fig. 1. The geometric parameters found in (I) are in a good agreement with the common accepted values. In the crystal, all eight active H atoms are involved in hydrogen bonding (Table 1), which link the kations and anions into three-dimensional structure.