organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Argininium ethyl sulfate

aMolecule Structure Research Center, National Academy of Sciences RA, Azatutyan ave. 26, 375014 Yerevan, Republic of Armenia
*Correspondence e-mail: harkar@nfsat.am

(Received 29 August 2008; accepted 17 September 2008; online 20 September 2008)

The title compound, C6H15N4O2+·C2H5O4S, exhibits nonlinear optical properties. An extensive hydrogen-bonding network [N⋯O = 2.786 (4)–3.196 (5) Å] links cations and anions into a three-dimensional structure.

Related literature

For crystal structures and nonlinear optical properties of related compounds, see: Monaco et al. (1987[Monaco, S. B., Davis, L. E., Velsko, S. P., Wang, F. T., Eimerl, D. & Zalkin, A. (1987). J. Cryst. Growth, 85, 252-257.]); Petrosyan et al. (2000[Petrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Terzyan, S. S. & Feigelson, R. S. (2000). J. Cryst. Growth, 213, 103-257.]). For details of the synthesis, see: Petrosyan (2005[Petrosyan, A. M. (2005). Proceedings of Conference on Laser Physics 2005, 11-14 October 2005, Ashtarak, Armenia, pp. 123-126.]).

[Scheme 1]

Experimental

Crystal data
  • C6H15N4O2+·C2H5O4S

  • Mr = 300.34

  • Orthorhombic, P 21 21 21

  • a = 9.1504 (18) Å

  • b = 12.519 (3) Å

  • c = 12.551 (3) Å

  • V = 1437.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 (2) K

  • 0.26 × 0.22 × 0.14 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 4566 measured reflections

  • 4171 independent reflections

  • 3091 reflections with I > 2σ(I)

  • Rint = 0.061

  • 3 standard reflections every 400 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.202

  • S = 1.03

  • 4171 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.59 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1775 Friedel pairs

  • Flack parameter: 0.05 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O5 0.89 1.94 2.823 (5) 173
N1—H1C⋯O6i 0.89 2.01 2.896 (4) 172
N1—H1A⋯O1ii 0.89 1.97 2.786 (4) 152
N2—H2⋯O3iii 0.86 2.25 3.098 (6) 170
N3—H3B⋯O6iii 0.86 2.35 3.196 (5) 167
N3—H3A⋯O2iv 0.86 1.93 2.771 (4) 165
N4—H4B⋯O1iv 0.86 2.00 2.847 (4) 170
N4—H4A⋯O4ii 0.86 2.11 2.945 (5) 165
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: DATCOL in CAD-4 Manual (Enraf–Nonius, 1988[Enraf-Nonius (1988). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: LS in CAD-4 Manual; data reduction: HELENA (Spek, 1997[Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In a search of analogs of the L-arginine phosphate (LAP) a large number of new materials [Monaco et al., 1987, Petrosyan et al., 2000] have been obtained by the interaction of L-arginine with various acids by choosing appropriate conditions. The crystals from the interaction of L-arginine with H2SO4 could not be obtained due to extremely high solubility of reaction product (Petrosyan, 2005). Nevertheless, the conditions for obtaining the crystals of L-arginine salt with ethylsulforic acid were found (Petrosyan, 2005).

We present herein a structural study of the L-argininium ethylsulfate, C6H15N4O2+.C2H5O4S-, (I). A view of the asymmetric unit is shown in Fig. 1. The geometric parameters found in (I) are in a good agreement with the common accepted values. In the crystal, all eight active H atoms are involved in hydrogen bonding (Table 1), which link the kations and anions into three-dimensional structure.

Related literature top

For crystal structures and nonlinear optical properties of related compounds, see: Monaco et al. (1987); Petrosyan et al. (2000). For details of the synthesis, see: Petrosyan (2005).

Experimental top

The single crystals of (I) were obtained by slow evaporation of the aqueous solution of exchange reaction product described by Petrosyan (2005):

L-Arg × HBF4 + KC2H5SO4 L-Arg × HC2H5SO4 + KBF4.

Refinement top

All H atoms were placed in geometrically calculated positions (C—H 0.96-0.98 Å, N—H 0.86-0.89 Å) and included in the refinement in a riding model approximation, with Uiso(H)= 1.5Ueq (of Me- and N+H3 groups) and 1.2Ueq (other carrier atoms). High values of Ueq of some ethylsulforic anion atoms, except S, as compared to the other atoms of the structure, demonstrate potential thermal motion (rotation) of this group around the relatively heavy S atom.

Computing details top

Data collection: DATCOL in CAD-4 Manual (Enraf–Nonius, 1988); cell refinement: LS in CAD-4 Manual (Enraf–Nonius, 1988); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the asymmetric unit of (I) showing the atomic numbering and displacement ellipsoids at the 50% probability level.
L-Argininium ethyl sulfate top
Crystal data top
C6H15N4O2+·C2H5O4SF(000) = 640
Mr = 300.34Dx = 1.387 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24 reflections
a = 9.1504 (18) Åθ = 14–16°
b = 12.519 (3) ŵ = 0.25 mm1
c = 12.551 (3) ÅT = 293 K
V = 1437.8 (5) Å3Block, colourless
Z = 40.26 × 0.22 × 0.14 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.062
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.3°
Graphite monochromatorh = 012
ω/2θ scansk = 017
4566 measured reflectionsl = 1717
4171 independent reflections3 standard reflections every 400 reflections
3091 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.072 w = 1/[σ2(Fo2) + (0.0927P)2 + 1.2922P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.202(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.74 e Å3
4171 reflectionsΔρmin = 0.59 e Å3
175 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.007 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1775 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (16)
Crystal data top
C6H15N4O2+·C2H5O4SV = 1437.8 (5) Å3
Mr = 300.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1504 (18) ŵ = 0.25 mm1
b = 12.519 (3) ÅT = 293 K
c = 12.551 (3) Å0.26 × 0.22 × 0.14 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.062
4566 measured reflections3 standard reflections every 400 reflections
4171 independent reflections intensity decay: none
3091 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.202Δρmax = 0.74 e Å3
S = 1.03Δρmin = 0.59 e Å3
4171 reflectionsAbsolute structure: Flack (1983), 1775 Friedel pairs
175 parametersAbsolute structure parameter: 0.05 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23564 (11)0.86276 (9)0.82316 (10)0.0575 (3)
O10.1060 (2)0.6386 (2)0.5342 (2)0.0447 (6)
O20.3427 (3)0.6749 (2)0.5555 (3)0.0541 (8)
O30.3324 (5)0.7594 (3)0.8318 (5)0.126 (2)
O40.0977 (4)0.8395 (4)0.7810 (5)0.114 (2)
O50.3241 (6)0.9208 (6)0.7447 (3)0.126 (2)
O60.2501 (5)0.9140 (2)0.9236 (3)0.0755 (11)
N10.3133 (3)0.8825 (2)0.5232 (2)0.0331 (5)
H1A0.39690.85330.50170.050*
H1B0.31400.88900.59380.050*
H1C0.30320.94670.49370.050*
N20.1657 (4)0.7002 (3)0.1525 (2)0.0450 (7)
H20.07510.71860.15180.054*
N30.0934 (4)0.5395 (3)0.0841 (3)0.0531 (9)
H3A0.11390.47590.06290.064*
H3B0.00510.56270.08030.064*
N40.3325 (4)0.5638 (3)0.1274 (3)0.0519 (9)
H4A0.40240.60350.15050.062*
H4B0.35030.49940.10740.062*
C10.2151 (3)0.6992 (3)0.5313 (3)0.0340 (6)
C20.1889 (3)0.8130 (2)0.4905 (2)0.0296 (6)
H10.09930.84060.52330.036*
C30.1696 (3)0.8141 (3)0.3697 (2)0.0332 (6)
H3C0.08830.76780.35150.040*
H3D0.14370.88600.34790.040*
C40.3030 (4)0.7788 (3)0.3057 (3)0.0392 (7)
H4C0.38420.82620.32090.047*
H4D0.33090.70720.32720.047*
C50.2713 (4)0.7799 (3)0.1865 (3)0.0408 (7)
H5A0.23530.85010.16700.049*
H5B0.36210.76830.14830.049*
C60.1980 (4)0.6018 (3)0.1226 (3)0.0400 (8)
C70.2636 (9)0.6578 (5)0.8418 (6)0.100 (2)
H7A0.20370.64340.77970.120*
H7B0.20120.65670.90430.120*
C80.3784 (9)0.5765 (5)0.8517 (5)0.098 (2)
H8A0.42490.56650.78380.147*
H8B0.33590.51030.87470.147*
H8C0.44960.59960.90290.147*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0378 (5)0.0573 (6)0.0773 (7)0.0002 (4)0.0002 (4)0.0298 (5)
O10.0284 (11)0.0372 (12)0.0686 (17)0.0036 (10)0.0039 (11)0.0095 (12)
O20.0285 (12)0.0425 (14)0.091 (2)0.0015 (10)0.0121 (13)0.0221 (14)
O30.067 (2)0.070 (3)0.241 (7)0.014 (2)0.018 (3)0.067 (4)
O40.0435 (17)0.094 (3)0.205 (6)0.0008 (19)0.016 (3)0.055 (3)
O50.103 (3)0.213 (6)0.061 (2)0.050 (4)0.017 (2)0.028 (3)
O60.121 (3)0.0484 (15)0.0577 (17)0.006 (2)0.017 (2)0.0105 (14)
N10.0310 (12)0.0337 (13)0.0347 (12)0.0004 (10)0.0024 (10)0.0021 (10)
N20.0364 (15)0.0459 (16)0.0528 (17)0.0022 (13)0.0005 (13)0.0137 (14)
N30.0346 (15)0.0485 (17)0.076 (2)0.0008 (13)0.0013 (16)0.0241 (17)
N40.0336 (15)0.0494 (18)0.073 (2)0.0035 (13)0.0012 (15)0.0241 (17)
C10.0281 (14)0.0341 (14)0.0396 (15)0.0023 (12)0.0025 (12)0.0055 (12)
C20.0214 (11)0.0297 (13)0.0377 (15)0.0021 (10)0.0025 (11)0.0017 (12)
C30.0285 (13)0.0346 (15)0.0364 (14)0.0024 (12)0.0006 (12)0.0001 (12)
C40.0299 (15)0.0458 (17)0.0421 (17)0.0007 (13)0.0029 (13)0.0074 (14)
C50.0439 (18)0.0385 (16)0.0401 (17)0.0027 (14)0.0093 (15)0.0078 (13)
C60.0355 (17)0.0437 (18)0.0406 (17)0.0023 (14)0.0059 (14)0.0087 (14)
C70.118 (6)0.072 (4)0.111 (5)0.010 (4)0.000 (4)0.032 (3)
C80.153 (7)0.057 (3)0.084 (4)0.005 (4)0.022 (4)0.002 (3)
Geometric parameters (Å, º) top
S1—O41.399 (4)N4—H4B0.8600
S1—O61.421 (3)C1—C21.533 (4)
S1—O51.468 (5)C2—C31.527 (4)
S1—O31.571 (4)C2—H10.9800
O1—C11.255 (4)C3—C41.526 (4)
O2—C11.244 (4)C3—H3C0.9700
O3—C71.426 (7)C3—H3D0.9700
N1—C21.490 (4)C4—C51.524 (5)
N1—H1A0.8900C4—H4C0.9700
N1—H1B0.8900C4—H4D0.9700
N1—H1C0.8900C5—H5A0.9700
N2—C61.322 (5)C5—H5B0.9700
N2—C51.453 (5)C7—C81.467 (9)
N2—H20.8600C7—H7A0.9700
N3—C61.326 (5)C7—H7B0.9700
N3—H3A0.8600C8—H8A0.9600
N3—H3B0.8600C8—H8B0.9600
N4—C61.321 (5)C8—H8C0.9600
N4—H4A0.8600
O4—S1—O6120.9 (3)C4—C3—H3C108.4
O4—S1—O5110.3 (3)C2—C3—H3C108.4
O6—S1—O5108.7 (3)C4—C3—H3D108.4
O4—S1—O3111.3 (3)C2—C3—H3D108.4
O6—S1—O3105.0 (3)H3C—C3—H3D107.5
O5—S1—O398.2 (4)C5—C4—C3111.2 (3)
C7—O3—S1119.5 (4)C5—C4—H4C109.4
C2—N1—H1A109.5C3—C4—H4C109.4
C2—N1—H1B109.5C5—C4—H4D109.4
H1A—N1—H1B109.5C3—C4—H4D109.4
C2—N1—H1C109.5H4C—C4—H4D108.0
H1A—N1—H1C109.5N2—C5—C4114.1 (3)
H1B—N1—H1C109.5N2—C5—H5A108.7
C6—N2—C5125.1 (3)C4—C5—H5A108.7
C6—N2—H2117.5N2—C5—H5B108.7
C5—N2—H2117.5C4—C5—H5B108.7
C6—N3—H3A120.0H5A—C5—H5B107.6
C6—N3—H3B120.0N4—C6—N2122.1 (3)
H3A—N3—H3B120.0N4—C6—N3118.5 (3)
C6—N4—H4A120.0N2—C6—N3119.4 (3)
C6—N4—H4B120.0O3—C7—C8108.1 (6)
H4A—N4—H4B120.0O3—C7—H7A110.1
O2—C1—O1126.3 (3)C8—C7—H7A110.1
O2—C1—C2117.1 (3)O3—C7—H7B110.1
O1—C1—C2116.6 (3)C8—C7—H7B110.1
N1—C2—C3110.9 (2)H7A—C7—H7B108.4
N1—C2—C1109.3 (2)C7—C8—H8A109.5
C3—C2—C1111.0 (3)C7—C8—H8B109.5
N1—C2—H1108.5H8A—C8—H8B109.5
C3—C2—H1108.5C7—C8—H8C109.5
C1—C2—H1108.5H8A—C8—H8C109.5
C4—C3—C2115.3 (3)H8B—C8—H8C109.5
O4—S1—O3—C725.9 (8)C1—C2—C3—C463.9 (3)
O6—S1—O3—C7106.5 (6)C2—C3—C4—C5178.5 (3)
O5—S1—O3—C7141.5 (6)C6—N2—C5—C489.4 (4)
O2—C1—C2—N119.4 (4)C3—C4—C5—N267.5 (4)
O1—C1—C2—N1162.5 (3)C5—N2—C6—N44.4 (6)
O2—C1—C2—C3103.2 (4)C5—N2—C6—N3173.9 (3)
O1—C1—C2—C374.9 (4)S1—O3—C7—C8178.3 (5)
N1—C2—C3—C457.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O50.891.942.823 (5)173
N1—H1C···O6i0.892.012.896 (4)172
N1—H1A···O1ii0.891.972.786 (4)152
N2—H2···O3iii0.862.253.098 (6)170
N3—H3B···O6iii0.862.353.196 (5)167
N3—H3A···O2iv0.861.932.771 (4)165
N4—H4B···O1iv0.862.002.847 (4)170
N4—H4A···O4ii0.862.112.945 (5)165
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x+1/2, y+3/2, z+1; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC6H15N4O2+·C2H5O4S
Mr300.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.1504 (18), 12.519 (3), 12.551 (3)
V3)1437.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.26 × 0.22 × 0.14
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4566, 4171, 3091
Rint0.062
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.202, 1.03
No. of reflections4171
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.59
Absolute structureFlack (1983), 1775 Friedel pairs
Absolute structure parameter0.05 (16)

Computer programs: DATCOL in CAD-4 Manual (Enraf–Nonius, 1988), LS in CAD-4 Manual (Enraf–Nonius, 1988), HELENA (Spek, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O50.891.942.823 (5)172.9
N1—H1C···O6i0.892.012.896 (4)171.7
N1—H1A···O1ii0.891.972.786 (4)152.1
N2—H2···O3iii0.862.253.098 (6)169.7
N3—H3B···O6iii0.862.353.196 (5)167.2
N3—H3A···O2iv0.861.932.771 (4)164.7
N4—H4B···O1iv0.862.002.847 (4)169.5
N4—H4A···O4ii0.862.112.945 (5)164.5
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x+1/2, y+3/2, z+1; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+1, z1/2.
 

Acknowledgements

The author expresses his thanks to Dr A. M. Petrosyan for providing the crystals and for valuable discussion of the results. This work was supported by US CRDF grant No. AE2-2533-YE-03.

References

First citationEnraf–Nonius (1988). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMonaco, S. B., Davis, L. E., Velsko, S. P., Wang, F. T., Eimerl, D. & Zalkin, A. (1987). J. Cryst. Growth, 85, 252–257.  CSD CrossRef CAS Web of Science Google Scholar
First citationPetrosyan, A. M. (2005). Proceedings of Conference on Laser Physics 2005, 11–14 October 2005, Ashtarak, Armenia, pp. 123–126.  Google Scholar
First citationPetrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Terzyan, S. S. & Feigelson, R. S. (2000). J. Cryst. Growth, 213, 103–257.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds