metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(1-methyl­imidazole-κN3)zinc(II)]-μ-isophthalato-κ2O1:O3]

aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China
*Correspondence e-mail: zhaojuanqd@163.com

(Received 17 September 2008; accepted 24 September 2008; online 27 September 2008)

In the solid state, the title compound, [Zn(C8H4O4)(C4H6N2)2]n, exhibits the existence of polymeric zigzag chains extending along the a axis. Each ZnII ion is coordinated by two N atoms [Zn—N = 1.996 (6) and 2.032 (5) Å] and two O atoms [Zn—O = 1.930 (4) and 1.976 (4) Å] in a distorted tetra­hedral geometry. Weak C—H⋯O inter­actions contribute to the crystal packing stability.

Related literature

In the related zinc compound [Zn(isophthalato)(1-H-imidazole)2] (Yang et al., 2002[Yang, J., Zheng, S., Tao, J., Liu, G. & Chen, X. (2002). Aust. J. Chem. 55, 741-744.]), the ZnII ions also have a distorted tetra­hedral environment.

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H4O4)(C4H6N2)2]

  • Mr = 393.72

  • Orthorhombic, P b c a

  • a = 9.6820 (19) Å

  • b = 13.224 (3) Å

  • c = 26.983 (5) Å

  • V = 3454.8 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3091 measured reflections

  • 2967 independent reflections

  • 2041 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.207

  • S = 1.05

  • 2967 reflections

  • 220 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.96 2.55 3.423 (10) 150
C4—H4B⋯O3i 0.93 2.31 3.150 (9) 150
C11—H11A⋯O2ii 0.93 2.54 3.457 (8) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the title compound, (I) (Fig. 1), the zinc(II) centers are bridged by carboxylate groups of isophthalate ligands. Each ZnII ion is coordinated by two N [Zn—N2 = 1.996 (6) Å, Zn—N4 = 2.032 (5) Å] and two O [Zn—O1 = 1.930 (4) Å, Zn—O4 = 1.976 (4) Å] atoms in a distorted tetrahedral geometry. All these values agree well with those observed in [Zn(isophthalato)(1-H-imidazole)2] (Yang et al., 2002). Each isophthalate dianion in (I) acts as a bidentate ligand to bridge two ZnII atoms through two monodentate carboxylate groups, building a zigzag polymeric chain along the a axis. The metal–metal distance across each polymer backbone is 9.682 (7) Å.

In the crystal, weak C—H···O interactions contribute to the crystal packing stability. In the corresponding zinc compound [Zn(isophthalato)(1-H-imidazole)2] (Yang et al., 2002), the ZnII ions have a distorted tetrahedral environment.

Related literature top

In the corresponding zinc compound [Zn(isophthalato)(1-H-imidazole)2] (Yang et al., 2002), the ZnII ions have a distorted tetrahedral environment.

Experimental top

The reaction of ZnCl2(0.68 g, 5 mmol) with isophthalic acid (0.83 g, 5 mmol) in an aqueous-alcohol (3:1) solution (40 ml) at 363 K for 30 minutes produced a blue solution, to which 1-methylimidazole (0.82 g, 10 mmol) was added. The reaction solution was kept at room temperature after stirring for an hour at 333 K. Colourless crystals were obtained after a few days.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 or 0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A portion of the polymeric chain in (I) showing the atomic numbering and 30% probability displacement ellipsoids.
catena-Poly[[bis(1-methylimidazole-κN3)zinc(II)]-µ-isophthalato- κ2O1:O3] top
Crystal data top
[Zn(C8H4O4)(C4H6N2)2]F(000) = 1616
Mr = 393.72Dx = 1.514 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.6820 (19) Åθ = 10–14°
b = 13.224 (3) ŵ = 1.45 mm1
c = 26.983 (5) ÅT = 293 K
V = 3454.8 (12) Å3Block, colourless
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.036
Radiation source: fine-focus sealed tubeθmax = 25.2°, θmin = 1.5°
Graphite monochromatorh = 011
ω scansk = 015
3091 measured reflectionsl = 032
2967 independent reflections3 standard reflections every 100 reflections
2041 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1255P)2]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.50 e Å3
40 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Zn(C8H4O4)(C4H6N2)2]V = 3454.8 (12) Å3
Mr = 393.72Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.6820 (19) ŵ = 1.45 mm1
b = 13.224 (3) ÅT = 293 K
c = 26.983 (5) Å0.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.036
3091 measured reflections3 standard reflections every 100 reflections
2967 independent reflections intensity decay: none
2041 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.06840 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.05Δρmax = 0.50 e Å3
2967 reflectionsΔρmin = 0.61 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.18405 (6)0.12667 (5)0.12048 (3)0.0338 (3)
N10.1883 (6)0.3348 (5)0.2326 (2)0.0594 (17)
N20.1689 (5)0.2071 (4)0.1829 (2)0.0434 (13)
N30.2381 (6)0.3608 (4)0.0199 (2)0.0461 (14)
N40.1948 (5)0.2244 (4)0.06251 (18)0.0358 (12)
O10.3326 (4)0.0294 (4)0.11870 (16)0.0460 (12)
O20.4748 (4)0.1603 (3)0.12273 (18)0.0510 (13)
O31.0442 (4)0.0567 (4)0.1520 (2)0.0680 (16)
O40.0041 (4)0.0763 (3)0.10656 (16)0.0440 (11)
C10.2355 (10)0.4326 (6)0.2511 (3)0.081
H1A0.30170.46050.22840.122*
H1B0.27770.42390.28300.122*
H1C0.15810.47760.25390.122*
C20.0944 (8)0.2711 (7)0.2534 (3)0.079 (3)
H2A0.04830.27980.28330.094*
C30.0821 (8)0.1945 (7)0.2223 (3)0.071 (2)
H3A0.02290.13990.22670.086*
C40.2306 (8)0.2910 (6)0.1911 (2)0.0523 (18)
H4B0.29760.31810.17030.063*
C50.2982 (8)0.4589 (5)0.0065 (3)0.060 (2)
H5A0.37270.47450.02880.089*
H5B0.22870.51040.00890.089*
H5C0.33260.45600.02680.089*
C60.2723 (6)0.3054 (5)0.0588 (2)0.0408 (15)
H6A0.34270.32180.08090.049*
C70.1029 (8)0.2310 (5)0.0239 (3)0.0568 (19)
H7A0.03260.18490.01750.068*
C80.1294 (8)0.3137 (5)0.0030 (3)0.059 (2)
H8A0.08350.33490.03150.070*
C90.9641 (6)0.0064 (5)0.1281 (2)0.0361 (14)
C100.8172 (5)0.0403 (5)0.1219 (2)0.0328 (14)
C110.7891 (7)0.1438 (5)0.1187 (2)0.0436 (16)
H11A0.86080.19070.11900.052*
C120.6544 (7)0.1755 (5)0.1151 (3)0.060 (2)
H12A0.63560.24430.11260.072*
C130.5473 (7)0.1080 (5)0.1151 (3)0.0510 (18)
H13A0.45720.13180.11210.061*
C140.5702 (5)0.0054 (4)0.1195 (2)0.0301 (12)
C150.7082 (5)0.0286 (4)0.1222 (2)0.0321 (13)
H15A0.72650.09750.12420.039*
C160.4545 (6)0.0702 (5)0.1210 (2)0.0340 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0166 (4)0.0401 (4)0.0446 (5)0.0005 (3)0.0007 (3)0.0023 (3)
N10.067 (4)0.058 (3)0.053 (3)0.018 (3)0.016 (3)0.013 (3)
N20.032 (3)0.056 (3)0.043 (3)0.008 (2)0.006 (2)0.001 (2)
N30.051 (3)0.052 (3)0.035 (3)0.008 (3)0.003 (3)0.003 (3)
N40.024 (2)0.043 (3)0.041 (3)0.009 (2)0.009 (2)0.006 (2)
O10.019 (2)0.057 (3)0.062 (3)0.004 (2)0.0020 (19)0.003 (2)
O20.021 (2)0.036 (2)0.096 (4)0.0011 (19)0.001 (2)0.004 (2)
O30.023 (2)0.075 (3)0.106 (4)0.001 (2)0.013 (3)0.041 (3)
O40.020 (2)0.049 (3)0.063 (3)0.0021 (19)0.004 (2)0.008 (2)
C10.0810.0810.0810.0000.0000.000
C20.068 (5)0.100 (6)0.068 (5)0.024 (4)0.038 (4)0.019 (4)
C30.064 (5)0.081 (5)0.069 (5)0.030 (4)0.031 (4)0.006 (4)
C40.052 (4)0.071 (4)0.033 (3)0.010 (3)0.015 (3)0.005 (3)
C50.069 (5)0.054 (4)0.056 (5)0.010 (4)0.008 (4)0.004 (4)
C60.034 (3)0.051 (4)0.037 (4)0.006 (3)0.001 (3)0.003 (3)
C70.053 (4)0.054 (4)0.063 (5)0.009 (4)0.017 (4)0.005 (4)
C80.061 (5)0.060 (5)0.054 (5)0.004 (4)0.017 (4)0.017 (4)
C90.017 (3)0.046 (3)0.045 (4)0.006 (3)0.000 (3)0.007 (3)
C100.011 (3)0.054 (4)0.033 (3)0.002 (2)0.002 (2)0.005 (3)
C110.026 (3)0.041 (4)0.064 (4)0.005 (3)0.006 (3)0.007 (3)
C120.029 (4)0.031 (3)0.119 (7)0.006 (3)0.005 (4)0.006 (4)
C130.024 (3)0.042 (4)0.087 (5)0.005 (3)0.002 (3)0.007 (3)
C140.015 (3)0.037 (3)0.038 (3)0.002 (2)0.004 (2)0.001 (3)
C150.017 (3)0.034 (3)0.046 (4)0.001 (2)0.002 (2)0.005 (3)
C160.012 (3)0.049 (4)0.041 (3)0.001 (3)0.001 (2)0.008 (3)
Geometric parameters (Å, º) top
Zn—O11.930 (4)C3—H3A0.9300
Zn—O41.976 (4)C4—H4B0.9300
Zn—N21.996 (6)C5—H5A0.9600
Zn—N42.032 (5)C5—H5B0.9600
N1—C41.327 (8)C5—H5C0.9600
N1—C21.360 (9)C6—H6A0.9300
N1—C11.459 (10)C7—C81.339 (9)
N2—C41.279 (8)C7—H7A0.9300
N2—C31.367 (8)C8—H8A0.9300
N3—C61.322 (8)C9—O4ii1.277 (8)
N3—C81.371 (9)C9—C101.501 (7)
N3—C51.468 (8)C10—C151.395 (8)
N4—C61.311 (7)C10—C111.399 (9)
N4—C71.372 (8)C11—C121.373 (8)
O1—C161.299 (7)C11—H11A0.9300
O2—C161.209 (8)C12—C131.368 (9)
O3—C91.207 (7)C12—H12A0.9300
O4—C9i1.277 (8)C13—C141.381 (8)
C1—H1A0.9600C13—H13A0.9300
C1—H1B0.9600C14—C151.411 (7)
C1—H1C0.9600C14—C161.502 (8)
C2—C31.319 (11)C15—H15A0.9300
C2—H2A0.9300
O1—Zn—O4117.23 (19)H5A—C5—H5B109.5
O1—Zn—N2115.5 (2)N3—C5—H5C109.5
O4—Zn—N2105.80 (19)H5A—C5—H5C109.5
O1—Zn—N4111.51 (19)H5B—C5—H5C109.5
O4—Zn—N496.63 (18)N4—C6—N3111.7 (6)
N2—Zn—N4108.3 (2)N4—C6—H6A124.2
C4—N1—C2106.5 (6)N3—C6—H6A124.2
C4—N1—C1125.3 (7)C8—C7—N4109.9 (6)
C2—N1—C1128.2 (7)C8—C7—H7A125.1
C4—N2—C3104.9 (6)N4—C7—H7A125.1
C4—N2—Zn125.0 (5)C7—C8—N3105.8 (6)
C3—N2—Zn129.6 (5)C7—C8—H8A127.1
C6—N3—C8107.4 (5)N3—C8—H8A127.1
C6—N3—C5125.9 (6)O3—C9—O4ii124.1 (6)
C8—N3—C5126.5 (6)O3—C9—C10120.2 (6)
C6—N4—C7105.2 (5)O4ii—C9—C10115.7 (5)
C6—N4—Zn127.4 (4)C15—C10—C11119.5 (5)
C7—N4—Zn126.2 (4)C15—C10—C9121.5 (6)
C16—O1—Zn113.5 (4)C11—C10—C9118.9 (5)
C9i—O4—Zn115.1 (4)C12—C11—C10119.2 (6)
N1—C1—H1A109.5C12—C11—H11A120.4
N1—C1—H1B109.5C10—C11—H11A120.4
H1A—C1—H1B109.5C13—C12—C11121.4 (6)
N1—C1—H1C109.5C13—C12—H12A119.3
H1A—C1—H1C109.5C11—C12—H12A119.3
H1B—C1—H1C109.5C12—C13—C14121.2 (6)
C3—C2—N1105.9 (7)C12—C13—H13A119.4
C3—C2—H2A127.0C14—C13—H13A119.4
N1—C2—H2A127.0C13—C14—C15118.0 (5)
C2—C3—N2110.2 (7)C13—C14—C16122.4 (5)
C2—C3—H3A124.9C15—C14—C16119.5 (5)
N2—C3—H3A124.9C10—C15—C14120.5 (5)
N2—C4—N1112.4 (6)C10—C15—H15A119.7
N2—C4—H4B123.8C14—C15—H15A119.7
N1—C4—H4B123.8O2—C16—O1124.0 (6)
N3—C5—H5A109.5O2—C16—C14122.4 (5)
N3—C5—H5B109.5O1—C16—C14113.6 (5)
O1—Zn—N2—C489.0 (6)Zn—N4—C6—N3169.7 (4)
O4—Zn—N2—C4139.6 (6)C8—N3—C6—N40.9 (8)
N4—Zn—N2—C436.9 (6)C5—N3—C6—N4176.2 (6)
O1—Zn—N2—C3100.1 (7)C6—N4—C7—C81.9 (8)
O4—Zn—N2—C331.4 (7)Zn—N4—C7—C8170.1 (5)
N4—Zn—N2—C3134.1 (7)N4—C7—C8—N31.4 (9)
O1—Zn—N4—C681.7 (5)C6—N3—C8—C70.3 (9)
O4—Zn—N4—C6155.6 (5)C5—N3—C8—C7175.0 (6)
N2—Zn—N4—C646.5 (6)O3—C9—C10—C15141.9 (7)
O1—Zn—N4—C7112.7 (6)O4ii—C9—C10—C1538.6 (9)
O4—Zn—N4—C710.0 (6)O3—C9—C10—C1134.3 (9)
N2—Zn—N4—C7119.1 (6)O4ii—C9—C10—C11145.2 (6)
O4—Zn—O1—C16170.5 (4)C15—C10—C11—C121.0 (10)
N2—Zn—O1—C1663.7 (4)C9—C10—C11—C12177.3 (6)
N4—Zn—O1—C1660.4 (4)C10—C11—C12—C130.7 (12)
O1—Zn—O4—C9i44.5 (5)C11—C12—C13—C141.0 (12)
N2—Zn—O4—C9i86.0 (4)C12—C13—C14—C152.4 (11)
N4—Zn—O4—C9i162.9 (4)C12—C13—C14—C16178.4 (6)
C4—N1—C2—C32.1 (10)C11—C10—C15—C140.3 (9)
C1—N1—C2—C3177.6 (8)C9—C10—C15—C14175.9 (5)
N1—C2—C3—N21.5 (11)C13—C14—C15—C102.0 (10)
C4—N2—C3—C20.2 (10)C16—C14—C15—C10178.7 (5)
Zn—N2—C3—C2172.6 (6)Zn—O1—C16—O21.8 (8)
C3—N2—C4—N11.2 (9)Zn—O1—C16—C14180.0 (4)
Zn—N2—C4—N1171.6 (5)C13—C14—C16—O2176.8 (7)
C2—N1—C4—N22.1 (9)C15—C14—C16—O22.4 (9)
C1—N1—C4—N2177.6 (7)C13—C14—C16—O11.4 (8)
C7—N4—C6—N31.7 (7)C15—C14—C16—O1179.4 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3iii0.962.553.423 (10)150
C4—H4B···O3iii0.932.313.150 (9)150
C11—H11A···O2iv0.932.543.457 (8)171
Symmetry codes: (iii) x+3/2, y+1/2, z; (iv) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O4)(C4H6N2)2]
Mr393.72
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)9.6820 (19), 13.224 (3), 26.983 (5)
V3)3454.8 (12)
Z8
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3091, 2967, 2041
Rint0.036
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.207, 1.05
No. of reflections2967
No. of parameters220
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.61

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O3i0.962.553.423 (10)150
C4—H4B···O3i0.932.313.150 (9)150
C11—H11A···O2ii0.932.543.457 (8)171
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y1/2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (grant No. Y2006B12).

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Zheng, S., Tao, J., Liu, G. & Chen, X. (2002). Aust. J. Chem. 55, 741–744.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds