metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis­(μ-2-chloro­benzoato-κ2O:O′)bis­­[(4-vinyl­pyridine-κN)copper(II)]

aCollege of Mechanical Engineering, Qingdao Technological University, Qingdao 266033, People's Republic of China
*Correspondence e-mail: zhaojuanqd@163.com

(Received 19 September 2008; accepted 24 September 2008; online 27 September 2008)

The title compound, [Cu2(C7H4ClO2)4(C7H7N)2], consists of centrosymmetric dinuclear mol­ecules with a Cu⋯Cu separation of 2.6676 (12) Å. In the mol­ecule, four 2-chloro­benzoate anions bridge two CuII ions, while two neutral 4-vinyl­pyridine ligands coordinate them in axial positions. The CuII ion has a distorted square-planar pyramidal coordination, with four O atoms from the chlorobenzoate anions at the base. The N pyridine atom completes the coordination environment in the apical position.

Related literature

In the corresponding dinuclear compound [tetra­kis(μ2-acetato)bis­(2-anilinopyridine)dicopper(II)] (Seco et al., 2002[Seco, J. M., Gonzàlez Garmendia, M. J., Pinilla, E. & Torres, M. R. (2002). Polyhedron, 21, 457-464.]), the CuII has a distorted square-planar pyramidal coordination environment.

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H4ClO2)4(C7H7N)2]

  • Mr = 959.58

  • Monoclinic, P 21 /c

  • a = 10.251 (2) Å

  • b = 20.412 (4) Å

  • c = 10.665 (2) Å

  • β = 111.99 (3)°

  • V = 2069.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 297 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta. Cryst. A24, 351-359.]) Tmin = 0.677, Tmax = 0.767

  • 3708 measured reflections

  • 3689 independent reflections

  • 2587 reflections with I > 2σ(I)

  • Rint = 0.029

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.166

  • S = 1.00

  • 3689 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, (I) (Fig. 1), consists of centrosymmetric dinuclear units, in which four 2-chlorobenzoato groups bridge the two copper ions and a 4-vinylpyridine neutral ligand occupies the axis position of each copper atom, coordinating them through the nitrogen atom. Each copper ion has a distorted square-planar pyramidal coordination, with four oxygen atoms in a plane. The distances for Cu—O1,O2,O3 and O4 are 1.975 (4), 1.957 (4), 1.969 (3) and 1.985 (3) Å, respectively. The fifth coordination position is occupied by the pyridine nitrogen, N, of a ligand molecule at 2.134 (4) Å. All these values agree well with those observed in [Cu2(υ-OOCCH3)4(PhNHpy)2] (PhNHpy is 2-anilinopyridine) (Seco et al., 2002). The Cu···Cu separation in (I) is 2.6473 (12) Å.

Related literature top

In the corresponding dinuclear compound [tetrakis(µ2-acetato)bis(2-anilinopyridine)dicopper(I)] (Seco et al., 2002), the CuII [CuI according to preceding name?] has a distorted square-planar pyramidal coordination environment.

Experimental top

A solution of 4-vinylpyridine (1.05 g, 10 mmol) in alcohol (10 ml) was added to a solution of CuCl2.2H2O (1.70 g, 10 mmol) and 2-chlorobebziuc acid (1.56 g, 10 mmol) and KOH (0.56 g, 10 mmol) in alcohol (40 ml). The solution was stirred during 2 h and a precipitate was formed. The blue precipitate was filtered off, washed with alcohol and dried in vacuo over CaCO3. Blue crystals were obtained from recrystallization in alcohol after a few days.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabelled atoms are related with the labelled ones by symmetry operation (-x, -y, 3-z).
Tetrakis(µ-2-chlorobenzoato-κ2O:O')bis[(4-vinylpyridine- κN)copper(II)] top
Crystal data top
[Cu2(C7H4ClO2)4(C7H7N)2]F(000) = 972
Mr = 959.58Dx = 1.540 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.251 (2) Åθ = 10–14°
b = 20.412 (4) ŵ = 1.34 mm1
c = 10.665 (2) ÅT = 297 K
β = 111.99 (3)°Block, blue
V = 2069.2 (8) Å30.30 × 0.30 × 0.20 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ω scansh = 1211
Absorption correction: ψ scan
(North et al., 1968)
k = 024
Tmin = 0.677, Tmax = 0.767l = 012
3708 measured reflections3 standard reflections every 100 reflections
3689 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
3689 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cu2(C7H4ClO2)4(C7H7N)2]V = 2069.2 (8) Å3
Mr = 959.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.251 (2) ŵ = 1.34 mm1
b = 20.412 (4) ÅT = 297 K
c = 10.665 (2) Å0.30 × 0.30 × 0.20 mm
β = 111.99 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2587 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.677, Tmax = 0.7673 standard reflections every 100 reflections
3708 measured reflections intensity decay: none
3689 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.00Δρmax = 0.37 e Å3
3689 reflectionsΔρmin = 0.57 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.05229 (6)0.05461 (3)1.53164 (6)0.0465 (2)
N10.1437 (4)0.1341 (2)1.5999 (4)0.0483 (9)
Cl10.52811 (19)0.03630 (12)1.6765 (3)0.1233 (9)
Cl20.2716 (2)0.17779 (10)1.41176 (18)0.0975 (6)
O10.2292 (4)0.0228 (2)1.3923 (4)0.0691 (10)
O20.1417 (4)0.0684 (2)1.6572 (4)0.0707 (11)
O30.0022 (4)0.09641 (17)1.3891 (4)0.0610 (9)
O40.0849 (4)0.00570 (19)1.6630 (3)0.0634 (10)
C10.4145 (9)0.2796 (5)1.8136 (7)0.119 (3)
H1A0.46280.24011.80180.142*
H1B0.44240.31511.85220.142*
C20.3097 (7)0.2851 (3)1.7770 (5)0.0787 (18)
H2A0.26380.32531.79030.094*
C30.2568 (6)0.2323 (3)1.7152 (5)0.0568 (13)
C40.3184 (6)0.1719 (3)1.6807 (5)0.0604 (13)
H4A0.40070.16271.69470.072*
C50.2598 (5)0.1244 (3)1.6253 (5)0.0561 (12)
H5A0.30360.08371.60500.067*
C60.0865 (5)0.1938 (3)1.6306 (5)0.0604 (13)
H6A0.00620.20271.61260.072*
C70.1379 (6)0.2424 (3)1.6864 (5)0.0693 (15)
H7A0.09240.28271.70540.083*
C80.5064 (9)0.1132 (5)1.9717 (8)0.125 (3)
H8A0.50430.14442.03440.151*
C90.3825 (7)0.0961 (4)1.8658 (6)0.094 (2)
H9A0.29910.11731.85640.113*
C100.3818 (5)0.0475 (3)1.7737 (5)0.0560 (13)
C110.5093 (6)0.0209 (3)1.7889 (6)0.0678 (15)
C120.6323 (7)0.0384 (4)1.8922 (8)0.095 (2)
H12A0.71680.01891.89960.114*
C130.6297 (8)0.0848 (5)1.9844 (8)0.114 (3)
H13A0.71220.09672.05500.137*
C140.2409 (5)0.0288 (3)1.6714 (5)0.0540 (12)
C150.1325 (8)0.1677 (4)1.0103 (8)0.091 (2)
H15A0.14700.19020.94080.109*
C160.2011 (7)0.1873 (3)1.1424 (7)0.0791 (18)
H16A0.26220.22291.16250.095*
C170.1783 (6)0.1538 (3)1.2444 (6)0.0643 (14)
C180.0894 (5)0.1012 (2)1.2185 (5)0.0495 (11)
C190.0226 (6)0.0818 (3)1.0849 (5)0.0713 (15)
H19A0.03740.04581.06400.086*
C200.0454 (7)0.1163 (4)0.9819 (6)0.091 (2)
H20A0.00060.10340.89240.109*
C210.0558 (5)0.0649 (3)1.3239 (5)0.0488 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0445 (3)0.0547 (4)0.0436 (3)0.0030 (3)0.0201 (2)0.0043 (3)
N10.045 (2)0.059 (2)0.045 (2)0.0024 (18)0.0206 (18)0.0000 (19)
Cl10.0601 (10)0.1388 (18)0.160 (2)0.0017 (10)0.0292 (12)0.0630 (16)
Cl20.0979 (12)0.1124 (14)0.0906 (12)0.0378 (11)0.0451 (10)0.0404 (11)
O10.049 (2)0.093 (3)0.057 (2)0.000 (2)0.0117 (17)0.010 (2)
O20.053 (2)0.076 (3)0.075 (3)0.0039 (19)0.0150 (19)0.024 (2)
O30.073 (2)0.056 (2)0.069 (2)0.0110 (18)0.044 (2)0.0070 (18)
O40.084 (3)0.064 (2)0.056 (2)0.0137 (19)0.041 (2)0.0100 (18)
C10.120 (7)0.134 (7)0.104 (6)0.044 (6)0.044 (5)0.036 (5)
C20.094 (5)0.082 (4)0.049 (3)0.026 (4)0.014 (3)0.011 (3)
C30.063 (3)0.063 (3)0.040 (3)0.013 (3)0.014 (2)0.001 (2)
C40.056 (3)0.069 (4)0.062 (3)0.008 (3)0.030 (3)0.002 (3)
C50.060 (3)0.052 (3)0.060 (3)0.002 (2)0.028 (3)0.008 (2)
C60.056 (3)0.054 (3)0.073 (4)0.006 (2)0.026 (3)0.004 (3)
C70.077 (4)0.058 (3)0.063 (4)0.002 (3)0.015 (3)0.011 (3)
C80.089 (5)0.182 (10)0.089 (5)0.022 (6)0.015 (4)0.063 (6)
C90.061 (4)0.140 (7)0.073 (4)0.009 (4)0.015 (3)0.037 (4)
C100.051 (3)0.069 (4)0.045 (3)0.005 (2)0.014 (2)0.004 (2)
C110.058 (3)0.071 (4)0.068 (4)0.005 (3)0.017 (3)0.000 (3)
C120.051 (3)0.128 (6)0.090 (5)0.007 (4)0.007 (3)0.013 (5)
C130.075 (5)0.161 (8)0.083 (5)0.017 (5)0.002 (4)0.030 (5)
C140.053 (3)0.074 (3)0.040 (3)0.007 (3)0.023 (2)0.000 (3)
C150.081 (5)0.114 (6)0.092 (5)0.017 (4)0.048 (4)0.039 (5)
C160.081 (4)0.075 (4)0.097 (5)0.001 (3)0.051 (4)0.017 (4)
C170.061 (3)0.074 (4)0.068 (4)0.004 (3)0.037 (3)0.001 (3)
C180.048 (3)0.056 (3)0.049 (3)0.007 (2)0.023 (2)0.006 (2)
C190.066 (3)0.096 (4)0.047 (3)0.002 (3)0.015 (3)0.002 (3)
C200.085 (5)0.131 (6)0.051 (4)0.010 (5)0.017 (3)0.021 (4)
C210.038 (2)0.066 (4)0.043 (3)0.003 (2)0.015 (2)0.004 (2)
Geometric parameters (Å, º) top
Cu—O21.958 (4)C7—H7A0.9300
Cu—O31.971 (3)C8—C131.350 (12)
Cu—O11.975 (4)C8—C91.392 (10)
Cu—O41.985 (3)C8—H8A0.9300
Cu—N12.134 (4)C9—C101.393 (8)
Cu—Cui2.6676 (12)C9—H9A0.9300
N1—C51.331 (6)C10—C111.368 (8)
N1—C61.339 (6)C10—C141.497 (7)
Cl1—C111.735 (6)C11—C121.375 (8)
Cl2—C171.750 (6)C12—C131.372 (11)
O1—C14i1.236 (6)C12—H12A0.9300
O2—C141.262 (6)C13—H13A0.9300
O3—C211.250 (6)C14—O1i1.236 (6)
O4—C21i1.240 (6)C15—C201.336 (10)
C1—C21.279 (10)C15—C161.378 (10)
C1—H1A0.9300C15—H15A0.9300
C1—H1B0.9300C16—C171.377 (8)
C2—C31.469 (7)C16—H16A0.9300
C2—H2A0.9300C17—C181.369 (7)
C3—C41.372 (8)C18—C191.388 (7)
C3—C71.379 (8)C18—C211.489 (6)
C4—C51.383 (7)C19—C201.397 (8)
C4—H4A0.9300C19—H19A0.9300
C5—H5A0.9300C20—H20A0.9300
C6—C71.359 (7)C21—O4i1.240 (6)
C6—H6A0.9300
O2—Cu—O388.52 (17)C13—C8—C9120.6 (8)
O2—Cu—O1166.73 (16)C13—C8—H8A119.7
O3—Cu—O189.60 (16)C9—C8—H8A119.7
O2—Cu—O490.15 (17)C8—C9—C10120.9 (7)
O3—Cu—O4166.87 (14)C8—C9—H9A119.6
O1—Cu—O488.70 (17)C10—C9—H9A119.6
O2—Cu—N196.94 (15)C11—C10—C9116.5 (5)
O3—Cu—N1102.02 (14)C11—C10—C14127.1 (5)
O1—Cu—N196.30 (16)C9—C10—C14116.4 (5)
O4—Cu—N191.12 (15)C10—C11—C12122.7 (6)
O2—Cu—Cui83.76 (11)C10—C11—Cl1122.3 (4)
O3—Cu—Cui85.49 (10)C12—C11—Cl1115.0 (5)
O1—Cu—Cui83.00 (12)C13—C12—C11119.7 (7)
O4—Cu—Cui81.38 (11)C13—C12—H12A120.1
N1—Cu—Cui172.47 (11)C11—C12—H12A120.1
C5—N1—C6115.5 (4)C8—C13—C12119.5 (7)
C5—N1—Cu119.7 (3)C8—C13—H13A120.2
C6—N1—Cu124.6 (3)C12—C13—H13A120.2
C14i—O1—Cu124.5 (4)O1i—C14—O2124.9 (5)
C14—O2—Cu123.8 (4)O1i—C14—C10119.1 (5)
C21—O3—Cu121.5 (3)O2—C14—C10116.0 (5)
C21i—O4—Cu126.0 (3)C20—C15—C16120.2 (6)
C2—C1—H1A120.0C20—C15—H15A119.9
C2—C1—H1B120.0C16—C15—H15A119.9
H1A—C1—H1B120.0C17—C16—C15119.4 (6)
C1—C2—C3124.5 (8)C17—C16—H16A120.3
C1—C2—H2A117.8C15—C16—H16A120.3
C3—C2—H2A117.8C18—C17—C16121.9 (6)
C4—C3—C7115.5 (5)C18—C17—Cl2119.6 (4)
C4—C3—C2124.8 (5)C16—C17—Cl2118.5 (5)
C7—C3—C2119.7 (6)C17—C18—C19117.8 (5)
C3—C4—C5121.0 (5)C17—C18—C21124.3 (5)
C3—C4—H4A119.5C19—C18—C21117.9 (5)
C5—C4—H4A119.5C18—C19—C20120.0 (6)
N1—C5—C4123.0 (5)C18—C19—H19A120.0
N1—C5—H5A118.5C20—C19—H19A120.0
C4—C5—H5A118.5C15—C20—C19120.8 (7)
N1—C6—C7124.4 (5)C15—C20—H20A119.6
N1—C6—H6A117.8C19—C20—H20A119.6
C7—C6—H6A117.8O4i—C21—O3125.6 (4)
C6—C7—C3120.5 (5)O4i—C21—C18117.1 (4)
C6—C7—H7A119.7O3—C21—C18117.2 (4)
C3—C7—H7A119.7
O2—Cu—N1—C5132.2 (4)C4—C3—C7—C61.5 (8)
O3—Cu—N1—C5137.8 (4)C2—C3—C7—C6179.3 (5)
O1—Cu—N1—C546.9 (4)C13—C8—C9—C102.6 (15)
O4—Cu—N1—C541.9 (4)C8—C9—C10—C113.5 (11)
O3—Cu—N1—C647.9 (4)C8—C9—C10—C14174.7 (7)
O1—Cu—N1—C6138.8 (4)C9—C10—C11—C122.6 (9)
O4—Cu—N1—C6132.4 (4)C14—C10—C11—C12175.4 (6)
O2—Cu—O1—C14i4.6 (10)C9—C10—C11—Cl1175.9 (5)
O3—Cu—O1—C14i86.4 (4)C14—C10—C11—Cl16.1 (8)
O4—Cu—O1—C14i80.5 (4)C10—C11—C12—C130.5 (12)
N1—Cu—O1—C14i171.5 (4)Cl1—C11—C12—C13178.0 (7)
Cui—Cu—O1—C14i0.9 (4)C9—C8—C13—C120.4 (16)
O3—Cu—O2—C1486.8 (4)C11—C12—C13—C80.6 (14)
O1—Cu—O2—C144.8 (10)Cu—O2—C14—O1i0.8 (8)
O4—Cu—O2—C1480.2 (4)Cu—O2—C14—C10179.3 (3)
N1—Cu—O2—C14171.3 (4)C11—C10—C14—O1i14.1 (8)
Cui—Cu—O2—C141.1 (4)C9—C10—C14—O1i163.9 (6)
O2—Cu—O3—C2182.9 (4)C11—C10—C14—O2165.8 (6)
O1—Cu—O3—C2184.0 (4)C9—C10—C14—O216.2 (7)
O4—Cu—O3—C211.4 (9)C20—C15—C16—C170.3 (11)
N1—Cu—O3—C21179.7 (4)C15—C16—C17—C180.1 (9)
Cui—Cu—O3—C211.0 (4)C15—C16—C17—Cl2177.6 (5)
O2—Cu—O4—C21i84.4 (4)C16—C17—C18—C190.6 (8)
O3—Cu—O4—C21i0.3 (10)Cl2—C17—C18—C19176.9 (4)
O1—Cu—O4—C21i82.4 (4)C16—C17—C18—C21177.2 (5)
N1—Cu—O4—C21i178.6 (4)Cl2—C17—C18—C215.3 (7)
Cui—Cu—O4—C21i0.8 (4)C17—C18—C19—C201.0 (8)
C1—C2—C3—C44.6 (10)C21—C18—C19—C20176.9 (5)
C1—C2—C3—C7176.3 (7)C16—C15—C20—C190.1 (11)
C7—C3—C4—C52.2 (8)C18—C19—C20—C150.8 (10)
C2—C3—C4—C5178.6 (5)Cu—O3—C21—O4i1.9 (7)
C6—N1—C5—C40.5 (7)Cu—O3—C21—C18179.9 (3)
Cu—N1—C5—C4174.3 (4)C17—C18—C21—O4i120.3 (6)
C3—C4—C5—N11.3 (8)C19—C18—C21—O4i61.9 (6)
C5—N1—C6—C71.2 (8)C17—C18—C21—O361.3 (7)
Cu—N1—C6—C7173.3 (4)C19—C18—C21—O3116.5 (6)
N1—C6—C7—C30.2 (9)
Symmetry code: (i) x, y, z+3.

Experimental details

Crystal data
Chemical formula[Cu2(C7H4ClO2)4(C7H7N)2]
Mr959.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)10.251 (2), 20.412 (4), 10.665 (2)
β (°) 111.99 (3)
V3)2069.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.677, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
3708, 3689, 2587
Rint0.029
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.166, 1.00
No. of reflections3689
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.57

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (grant No. Y2006B12).

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta. Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSeco, J. M., Gonzàlez Garmendia, M. J., Pinilla, E. & Torres, M. R. (2002). Polyhedron, 21, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds