metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1280-m1281

Tricaesium tris­­(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)lutetium(III) octa­hydrate

aInstitut Laue Langevin, 6 rue Jules Horowitz, B.P.156, 38042 Grenoble Cedex 9, France, bGroupe Matiere Condensee et Materiaux, UMR CNRS 6626, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France, and cLaboratoire de Chimie, UMR CNRS 5182, ENS Lyon, 46 allee d'Italie, 69364 Lyon cedex 07, France
*Correspondence e-mail: legrand@ill.fr

(Received 9 June 2008; accepted 11 September 2008; online 20 September 2008)

Colourless block crystals of the title compound, Cs3[Lu(dipic)3]·8H2O [dipic is dipicolinate or pyridine-2,6-dicarboxyl­ate, C7H3NO4] were synthesized by slow evaporation of the solvent. The crystal structure of this LuIII-complex, isostructural with the DyIII and EuIII complexes, was determined from a crystal twinned by inversion and consists of discrete [Lu(dipic)3]3− anions, Cs+ cations and water mol­ecules involving hydrogen bonding. The Lu atom lies on a twofold rotation axis and is coordinated by six O atoms and three N atoms of three dipicolinate ligands. One Cs atom is also on a twofold axis. The unit cell can be regarded as successive layers along the crystallographic c-axis formed by [Lu(dipic)3]3− anionic planes and [Cs+, H2O] cationic planes. In the crystal structure, although the H atoms attached to water mol­ecules could not be located, short O—O contacts clearly indicate the occurrence of an intricate hydrogen-bonded network through contacts with other water mol­ecules, Cs cations or with the O atoms of the dipicolinate ligands.

Related literature

For potential applications of lanthanide complexes as second-order non-linear optical materials, see: Tancrez et al. (2005[Tancrez, N., Feuvrie, C., Ledoux, I., Zyss, J., Toupet, L., Le Bozec, H. & Maury, O. (2005). J. Am. Chem. Soc. 127, 13474-13475.]); Sénéchal et al. (2004[Sénéchal, K., Toupet, L., Ledoux, I., Zyss, J., Le Bozec, H. & Maury, O. (2004). Chem. Commun. pp. 2180-2181.]). For the isostructural EuIII complex, see: Brayshaw et al. (1995[Brayshaw, P. A., Bünzli, J.-C. G., Foidevaux, P., Harrowfield, J. M., Kim, Y. & Sobolev, A. N. (1995). Inorg. Chem. 34, 2068-2076.]). For other related complexes, see: Murray et al. (1990[Murray, G. M., Sarrio, R. M. & Peterson, J. R. (1990). Inorg. Chim. Acta, 176, 233-240.]). For related literature, see: Flack & Bernardinelli (1999[Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915.], 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]).

[Scheme 1]

Experimental

Crystal data
  • Cs3[Lu(C7H3NO4)3]·8H2O

  • Mr = 1213.14

  • Orthorhombic, C 2221

  • a = 10.0406 (2) Å

  • b = 17.8109 (6) Å

  • c = 18.4221 (5) Å

  • V = 3294.46 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.36 mm−1

  • T = 100 (2) K

  • 0.20 × 0.19 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur–Sapphire3 diffractometer

  • Absorption correction: Gaussian (ABSORB; DeTitta, 1985[DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.]) Tmin = 0.307, Tmax = 0.425

  • 51066 measured reflections

  • 3520 independent reflections

  • 3491 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.46

  • 3520 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 3.00 e Å−3

  • Δρmin = −0.94 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1501 Friedel pairs

  • Flack parameter: 0.270 (12)

Data collection: CrysAlis CCD (Oxford Diffraction 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: SORTAV (Blessing, 1989[Blessing, R. H. (1989). J. Appl. Cryst. 22, 396-397.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Lanthanide complexes attract considerable interest due to their magnetic and luminescent properties, but also for their potentialities in the field of second-order nonlinear optics (Sénéchal et al., 2004; Tancrez et al., 2005). Lanthanides emission can be sensitized either by direct absorption in the forbidden f-f transitions or via energy transfer from an organic ligand acting as antenna. Pulsed excitations induce long luminescence decay of the lanthanides and this time-gated emission can be used in medicine as probes in biological system for diagnosis or therapeutic purposes. In this context, lanthanide tris-dipicolinate (= pyridine-2,6-dicarboxylate) have been extensively studied both in solution and in solid state. We report the synthesis and structural characterization by X-ray diffraction measurements of the following complex: Cs3[Lu(dipic)3].8H2O, (I).

The compound (I) is isomorphous to the EuIII complex (Brayshaw et al., 1995). The asymmetric unit contains one LuIII atom located on a twofold rotation axis, one and a half dipicolinate carboxylate ligand, two Cs+ cations and water molecules (Fig. 1). The unit cell could be regarded as successive layers along the crystallographic c-axis formed by [Lu(dipic)3]3- anionic planes and [Cs+, H2O] cationic planes (Fig. 2).

Two types of Cs+ cations, which are bridged by both carboxylate and water oxygen atoms, form a chain extending throughout the crystal (Fig. 2). The chain could be considered as a sequence of ten-coordinate caesium ions linked, through bridging coordination, to eight-coordinate caesium ions. All water molecules are involved in coordination either to Cs+, to other water molecules or to the oxygen atoms of the dipicolinate ligands.

The LuIII atom, being nine-coordinated by six O and three N atoms of three dipicolinate ligands, is in the centre of a quite regular tricapped trigonal prismatic coordination sphere (Fig. 1). In those compounds, metal-to-metal distances play an important role concerning the electronic interactions affecting luminescence behaviour. For (I) the shortest Lu···Lu separation is 10.22 Å in contrast with the 4.50Å of the shortest Cs···Lu separation. These distances compare well with those observed in the Cs3[Eu(dipic)3].9H2O (Brayshaw et al., 1995). Geometrical parameters of the dipicolinate ligand are found to be in agreement with those of other structures containing dipicolinate.

Although the H atoms attached to water molecules could not be located, short O—O contacts clearly indicate the occurrence of a complicated hydrogen-bonded network. The water molecules are positioned in a channel formed by the successive anionic and cationic layers. The water molecules in this channel appear to have considerable freedom of motion. The structural refinement of (I) reveals high values of the thermal motion parameters of the water oxygen atoms indicating that most of the water molecules are incorporated in the unit cell in disordered positions. This effect was also observed in the complexes Cs3[Eu(dipic)3].9H2O, [Co(sar)][Lu(dipic)3].13H2O and Na3[Eu(dipic)3].nH2O (Brayshaw et al., 1995; Murray et al., 1990) which have also been investigated by emission spectroscopy, showing that different arrangements of the water molecules induce different crystal field splittings, clearly pointed out in the emission spectra.

Related literature top

For potential applications of lanthanide complexes as second-order non-linear optical materials, see: Tancrez et al. (2005); Sénéchal et al. (2004). For the isomorphous EuIII complex, see: Brayshaw et al. (1995). For other related complexes, see: Murray et al. (1990). For related literature, see: Flack & Bernardinelli (1999, 2000).

Experimental top

The caesium salt of the tris(dipicolinato)-LuIII anion was prepared by reaction between dipicolinic acid (3Eq) and CsCO3 acting as base and counter-anion in water. After stirring until everything dissolved, LuCl3.6H2O (1Eq) was added and the reaction was stirred at room temperature for two more hours. The water was evaporated and the white solid was dissolved in the minimum of boiling water. The complex was purified by three successive crystallizations at 4°C.

Refinement top

H atoms of the dipic ligand were placed in geometrically idealized positions with fixed C—H distances (0.93 Å) and refined in riding mode, with Uiso(H) = 1.2Ueq(C). Due to the large disorder observed on the water molecules, it was not possible to position correctly the associated H atoms which were not included in the final refinement.

The crystal structure of (I) indicates a disorder of the O4w water oxygen atom which was refined at two independent positions; the two O4w positions have complementary refined occupancies of 0.69 (2) and 0.31 (2) for the major and minor positions respectively. The highest peak in the final difference Fourier map is located at 2.26 Å from O4wA and stands on a two fold axis lying equidistant to 3 heavy atoms. PLATON shows that there are no accessible voids in the cell and so this position might be related to the occurrence of diffraction ripple from the 3 heavy atoms. The deepest hole is at 1.20 Å from atom Lu1. The atom C24, which stands on a symmetry axis, lies essentially equidistant from two heavy atoms and stands on a diffraction ripple lying with a maximum right beside the C24 site; the thermal motion parameters of C24 were so constraint to be identical as C22 and C23.

The absolute structure parameter was calculated using SHELX97 (Sheldrick, 2008). Owing to the occurrence of strong inversion-distinguishing power (Flack, 1983; Flack and Bernardinelli, 1999; 2000), the value given for the Flack parameter and its standard uncertainty (0.270 (12)) could be regarded as reliable, and then indicates that the crystal is twinned by inversion (Brayshaw et al., 1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction 2006); cell refinement: CrysAlis RED (Oxford Diffraction 2006); data reduction: SORTAV (Blessing, 1989); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Lu(dipic)3]3- with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of Cs3[Lu(dipic)3].8H2O with hydrogen bonds (in dotted line) and coordinate bonds to caesium. [Lu(dipic)3]3- anions and Cs+ cations are distributed in the cell as successive anionic/cationic layers along the crystallographic c-axis (Lu atoms are in green, Cs in yellow, O in red, C in grey and N in blue).
Tricaesium tris(pyridine-2,6-dicarboxylato- κ3O2,N,O6)lutetium(III) octahydrate top
Crystal data top
Cs3[Lu(C7H3NO4)3]·8H2OF(000) = 2312
Mr = 1213.14Dx = 2.446 Mg m3
Orthorhombic, C2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c 2Cell parameters from 17659 reflections
a = 10.0406 (2) Åθ = 3.2–59.9°
b = 17.8109 (6) ŵ = 6.36 mm1
c = 18.4221 (5) ÅT = 100 K
V = 3294.46 (16) Å3Block, colourless
Z = 40.20 × 0.19 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur-Sapphire3
diffractometer
3520 independent reflections
Radiation source: fine-focus sealed tube3491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.0°, θmin = 3.2°
Absorption correction: gaussian
(ABSORB; DeTitta, 1985)
h = 1212
Tmin = 0.308, Tmax = 0.425k = 2222
51066 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0149P)2 + 27.044P]
where P = (Fo2 + 2Fc2)/3
S = 1.46(Δ/σ)max < 0.001
3520 reflectionsΔρmax = 3.00 e Å3
208 parametersΔρmin = 0.94 e Å3
0 restraintsAbsolute structure: Flack (1983),1501 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.270 (12)
Crystal data top
Cs3[Lu(C7H3NO4)3]·8H2OV = 3294.46 (16) Å3
Mr = 1213.14Z = 4
Orthorhombic, C2221Mo Kα radiation
a = 10.0406 (2) ŵ = 6.36 mm1
b = 17.8109 (6) ÅT = 100 K
c = 18.4221 (5) Å0.20 × 0.19 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur-Sapphire3
diffractometer
3520 independent reflections
Absorption correction: gaussian
(ABSORB; DeTitta, 1985)
3491 reflections with I > 2σ(I)
Tmin = 0.308, Tmax = 0.425Rint = 0.045
51066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0149P)2 + 27.044P]
where P = (Fo2 + 2Fc2)/3
S = 1.46Δρmax = 3.00 e Å3
3520 reflectionsΔρmin = 0.94 e Å3
208 parametersAbsolute structure: Flack (1983),1501 Friedel pairs
0 restraintsAbsolute structure parameter: 0.270 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Lu10.75054 (5)0.00000.00000.00950 (7)
Cs10.74407 (4)0.021678 (17)0.24335 (2)0.01702 (8)
Cs20.50000.26389 (3)0.25000.01796 (11)
N110.8713 (4)0.1197 (2)0.0042 (3)0.0107 (8)
O110.6846 (4)0.0835 (2)0.0950 (2)0.0149 (8)
O120.7226 (5)0.1846 (3)0.1649 (2)0.0228 (12)
O131.0389 (5)0.0907 (3)0.1601 (2)0.0174 (11)
O140.9174 (4)0.01382 (19)0.0906 (2)0.0124 (8)
C120.9612 (6)0.1355 (3)0.0466 (3)0.0131 (12)
C131.0349 (6)0.2016 (3)0.0468 (3)0.0187 (13)
H131.10010.20890.08190.022*
C141.0140 (14)0.2518 (3)0.0006 (8)0.040 (2)
H141.05670.29800.00260.048*
C150.9185 (7)0.2357 (4)0.0624 (3)0.0199 (13)
H150.90730.26880.10100.024*
C160.8496 (6)0.1693 (3)0.0580 (3)0.0132 (11)
C170.7438 (8)0.1440 (3)0.1112 (3)0.0146 (6)
C180.9756 (6)0.0754 (3)0.1041 (4)0.0146 (6)
N210.5071 (8)0.00000.00000.0173 (12)
O210.4794 (7)0.1104 (3)0.1573 (3)0.0323 (15)
O220.6543 (5)0.0785 (2)0.0880 (2)0.0168 (9)
C220.4415 (7)0.0390 (4)0.0490 (3)0.0242 (9)
C230.3047 (7)0.0426 (4)0.0509 (3)0.0242 (9)
H230.25840.07190.08430.029*
C240.2430 (13)0.00000.00000.0242 (9)
H240.15030.00000.00000.029*
C250.5310 (6)0.0805 (4)0.1040 (4)0.0146 (6)
O1W0.7467 (9)0.1739 (4)0.3818 (4)0.0584 (17)
O2W0.9514 (7)0.0907 (4)0.3228 (4)0.0424 (18)
O3W0.5456 (5)0.0888 (3)0.3207 (3)0.0240 (12)
O4WA0.6970 (8)0.2031 (4)0.2207 (6)0.032 (3)0.69 (2)
O4WB0.7228 (15)0.1956 (8)0.1715 (11)0.023 (6)0.31 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Lu10.00740 (14)0.01013 (12)0.01097 (13)0.0000.0000.00081 (10)
Cs10.01540 (16)0.02237 (15)0.01327 (15)0.00244 (13)0.00109 (19)0.00051 (11)
Cs20.0245 (3)0.01430 (19)0.0151 (2)0.0000.0028 (2)0.000
N110.008 (2)0.0127 (18)0.011 (2)0.0017 (15)0.0012 (18)0.0004 (17)
O110.013 (2)0.013 (2)0.018 (2)0.0015 (16)0.0019 (16)0.0004 (16)
O120.023 (4)0.023 (2)0.022 (2)0.0013 (18)0.0084 (19)0.0097 (17)
O130.019 (3)0.023 (3)0.010 (2)0.0014 (18)0.0035 (16)0.0022 (17)
O140.010 (2)0.008 (2)0.018 (2)0.0010 (14)0.0021 (15)0.0017 (14)
C120.015 (3)0.011 (2)0.014 (3)0.0009 (19)0.001 (2)0.002 (2)
C130.018 (4)0.017 (3)0.021 (3)0.004 (2)0.004 (2)0.001 (2)
C140.033 (6)0.023 (3)0.066 (5)0.003 (3)0.040 (5)0.009 (3)
C150.026 (4)0.018 (3)0.016 (3)0.007 (3)0.002 (2)0.005 (2)
C160.015 (3)0.012 (3)0.012 (3)0.002 (2)0.003 (2)0.001 (2)
C170.0135 (16)0.0138 (13)0.0166 (13)0.0096 (16)0.0027 (15)0.0028 (10)
C180.0135 (16)0.0138 (13)0.0166 (13)0.0096 (16)0.0027 (15)0.0028 (10)
N210.009 (3)0.027 (3)0.016 (3)0.0000.0000.010 (3)
O210.038 (4)0.039 (3)0.021 (2)0.021 (3)0.014 (2)0.009 (2)
O220.020 (3)0.013 (2)0.0168 (19)0.0027 (17)0.0040 (17)0.0020 (15)
C220.0106 (19)0.048 (2)0.0143 (17)0.007 (2)0.0024 (15)0.0146 (17)
C230.0106 (19)0.048 (2)0.0143 (17)0.007 (2)0.0024 (15)0.0146 (17)
C240.0106 (19)0.048 (2)0.0143 (17)0.007 (2)0.0024 (15)0.0146 (17)
C250.0135 (16)0.0138 (13)0.0166 (13)0.0096 (16)0.0027 (15)0.0028 (10)
O1W0.046 (4)0.079 (5)0.051 (3)0.016 (5)0.002 (4)0.012 (3)
O2W0.047 (4)0.021 (3)0.059 (4)0.003 (3)0.028 (3)0.001 (3)
O3W0.018 (3)0.032 (3)0.022 (3)0.004 (2)0.005 (2)0.004 (2)
O4WA0.028 (4)0.030 (4)0.039 (6)0.002 (3)0.003 (3)0.007 (3)
O4WB0.012 (11)0.018 (7)0.038 (13)0.005 (5)0.011 (7)0.015 (6)
Geometric parameters (Å, º) top
Lu1—O22i2.348 (4)O11—C171.267 (8)
Lu1—O222.348 (4)O12—C171.244 (7)
Lu1—O142.377 (4)O13—C181.242 (9)
Lu1—O14i2.377 (4)O13—Cs1ix3.070 (5)
Lu1—O112.390 (4)O13—Cs2x3.100 (5)
Lu1—O11i2.390 (4)O13—Cs1i3.553 (5)
Lu1—N212.445 (8)O14—C181.267 (8)
Lu1—N11i2.454 (4)O14—Cs1i3.312 (4)
Lu1—N112.454 (4)C12—C131.390 (8)
Lu1—Cs14.5002 (4)C12—C181.513 (8)
Lu1—Cs1i4.5002 (4)C13—C141.267 (13)
Cs1—O13ii3.070 (5)C13—Cs2x3.810 (6)
Cs1—O3W3.142 (5)C13—H130.9300
Cs1—O22i3.167 (4)C14—C151.517 (12)
Cs1—O2W3.237 (6)C14—H140.9300
Cs1—O4WA3.293 (8)C15—C161.373 (9)
Cs1—O21iii3.299 (6)C15—H150.9300
Cs1—O14i3.312 (4)C16—C171.514 (9)
Cs1—O113.367 (4)C18—Cs1i3.592 (6)
Cs1—O4WB3.375 (16)N21—C22i1.315 (8)
Cs1—O21i3.474 (6)N21—C221.315 (8)
Cs1—C25i3.502 (6)O21—C251.230 (9)
Cs1—O13i3.553 (5)O21—Cs1xi3.299 (6)
Cs2—O123.073 (5)O21—Cs1i3.474 (6)
Cs2—O12iv3.073 (5)O22—C251.273 (8)
Cs2—O13v3.100 (5)O22—Cs1i3.167 (4)
Cs2—O13vi3.100 (5)C22—C231.376 (10)
Cs2—O4WAvii3.145 (8)C22—C251.544 (10)
Cs2—O4WAviii3.145 (8)C23—C241.356 (9)
Cs2—O4WBvii3.219 (14)C23—Cs1xi3.840 (6)
Cs2—O4WBviii3.219 (14)C23—H230.9300
Cs2—O3W3.410 (6)C24—C23i1.356 (9)
Cs2—O3Wiv3.410 (6)C24—H240.9300
Cs2—C13v3.810 (6)C25—Cs1i3.502 (6)
Cs2—C13vi3.810 (6)O3W—Cs1iv3.705 (6)
N11—C121.330 (7)O4WA—Cs2xii3.145 (8)
N11—C161.345 (7)O4WB—Cs2xii3.219 (14)
O22i—Lu1—O22131.4 (2)O13v—Cs2—O4WAviii82.77 (19)
O22i—Lu1—O14146.72 (14)O13vi—Cs2—O4WAviii79.26 (18)
O22—Lu1—O1475.16 (15)O4WAvii—Cs2—O4WAviii158.5 (3)
O22i—Lu1—O14i75.16 (15)O12—Cs2—O4WBvii120.2 (4)
O22—Lu1—O14i146.72 (14)O12iv—Cs2—O4WBvii72.8 (3)
O14—Lu1—O14i90.4 (2)O13v—Cs2—O4WBvii86.8 (3)
O22i—Lu1—O1175.58 (13)O13vi—Cs2—O4WBvii71.4 (3)
O22—Lu1—O1191.20 (14)O4WAvii—Cs2—O4WBvii17.2 (3)
O14—Lu1—O11130.16 (14)O4WAviii—Cs2—O4WBvii150.6 (3)
O14i—Lu1—O1175.28 (14)O12—Cs2—O4WBviii72.8 (3)
O22i—Lu1—O11i91.20 (14)O12iv—Cs2—O4WBviii120.2 (4)
O22—Lu1—O11i75.58 (13)O13v—Cs2—O4WBviii71.4 (3)
O14—Lu1—O11i75.28 (14)O13vi—Cs2—O4WBviii86.8 (3)
O14i—Lu1—O11i130.16 (14)O4WAvii—Cs2—O4WBviii150.6 (3)
O11—Lu1—O11i147.8 (2)O4WAviii—Cs2—O4WBviii17.2 (3)
O22i—Lu1—N2165.71 (12)O4WBvii—Cs2—O4WBviii154.1 (5)
O22—Lu1—N2165.71 (12)O12—Cs2—O3W71.14 (12)
O14—Lu1—N21134.81 (10)O12iv—Cs2—O3W58.84 (12)
O14i—Lu1—N21134.81 (10)O13v—Cs2—O3W125.24 (14)
O11—Lu1—N2173.90 (11)O13vi—Cs2—O3W162.07 (13)
O11i—Lu1—N2173.90 (11)O4WAvii—Cs2—O3W111.48 (18)
O22i—Lu1—N11i73.00 (16)O4WAviii—Cs2—O3W88.59 (17)
O22—Lu1—N11i134.33 (16)O4WBvii—Cs2—O3W119.5 (3)
O14—Lu1—N11i73.72 (14)O4WBviii—Cs2—O3W85.3 (3)
O14i—Lu1—N11i65.42 (14)O12—Cs2—O3Wiv58.84 (12)
O11—Lu1—N11i134.47 (16)O12iv—Cs2—O3Wiv71.14 (12)
O11i—Lu1—N11i64.75 (15)O13v—Cs2—O3Wiv162.07 (13)
N21—Lu1—N11i119.60 (10)O13vi—Cs2—O3Wiv125.24 (14)
O22i—Lu1—N11134.33 (16)O4WAvii—Cs2—O3Wiv88.59 (17)
O22—Lu1—N1173.00 (16)O4WAviii—Cs2—O3Wiv111.48 (19)
O14—Lu1—N1165.42 (14)O4WBvii—Cs2—O3Wiv85.3 (3)
O14i—Lu1—N1173.72 (14)O4WBviii—Cs2—O3Wiv119.5 (3)
O11—Lu1—N1164.75 (15)O3W—Cs2—O3Wiv47.76 (19)
O11i—Lu1—N11134.47 (16)O12—Cs2—C13v129.96 (13)
N21—Lu1—N11119.60 (10)O12iv—Cs2—C13v60.42 (13)
N11i—Lu1—N11120.8 (2)O13v—Cs2—C13v47.80 (13)
O22i—Lu1—Cs141.88 (11)O13vi—Cs2—C13v113.68 (13)
O22—Lu1—Cs1137.11 (11)O4WAvii—Cs2—C13v92.8 (2)
O14—Lu1—Cs1135.91 (10)O4WAviii—Cs2—C13v83.7 (2)
O14i—Lu1—Cs145.74 (10)O4WBvii—Cs2—C13v109.0 (4)
O11—Lu1—Cs147.15 (10)O4WBviii—Cs2—C13v66.5 (4)
O11i—Lu1—Cs1132.23 (10)O3W—Cs2—C13v77.57 (13)
N21—Lu1—Cs189.173 (8)O3Wiv—Cs2—C13v120.70 (13)
N11i—Lu1—Cs187.94 (12)O12—Cs2—C13vi60.42 (13)
N11—Lu1—Cs192.88 (12)O12iv—Cs2—C13vi129.96 (13)
O22i—Lu1—Cs1i137.11 (11)O13v—Cs2—C13vi113.68 (13)
O22—Lu1—Cs1i41.88 (11)O13vi—Cs2—C13vi47.80 (13)
O14—Lu1—Cs1i45.74 (10)O4WAvii—Cs2—C13vi83.7 (2)
O14i—Lu1—Cs1i135.91 (10)O4WAviii—Cs2—C13vi92.8 (2)
O11—Lu1—Cs1i132.23 (10)O4WBvii—Cs2—C13vi66.5 (4)
O11i—Lu1—Cs1i47.15 (10)O4WBviii—Cs2—C13vi109.0 (4)
N21—Lu1—Cs1i89.173 (8)O3W—Cs2—C13vi120.70 (13)
N11i—Lu1—Cs1i92.88 (12)O3Wiv—Cs2—C13vi77.57 (13)
N11—Lu1—Cs1i87.94 (12)C13v—Cs2—C13vi161.41 (18)
Cs1—Lu1—Cs1i178.347 (17)C12—N11—C16119.3 (5)
O13ii—Cs1—O3W115.98 (14)C12—N11—Lu1119.8 (4)
O13ii—Cs1—O22i126.72 (12)C16—N11—Lu1120.9 (4)
O3W—Cs1—O22i115.44 (13)C17—O11—Lu1124.9 (4)
O13ii—Cs1—O2W61.89 (12)C17—O11—Cs1101.4 (3)
O3W—Cs1—O2W79.37 (13)Lu1—O11—Cs1101.50 (14)
O22i—Cs1—O2W142.10 (16)C17—O12—Cs2142.9 (5)
O13ii—Cs1—O4WA77.43 (18)C18—O13—Cs1ix139.2 (4)
O3W—Cs1—O4WA125.53 (19)C18—O13—Cs2x124.2 (4)
O22i—Cs1—O4WA62.0 (2)Cs1ix—O13—Cs2x96.56 (13)
O2W—Cs1—O4WA139.14 (19)C18—O13—Cs1i81.8 (4)
O13ii—Cs1—O21iii88.27 (12)Cs1ix—O13—Cs1i101.70 (14)
O3W—Cs1—O21iii67.47 (13)Cs2x—O13—Cs1i87.33 (12)
O22i—Cs1—O21iii98.92 (14)C18—O14—Lu1123.5 (4)
O2W—Cs1—O21iii118.85 (19)C18—O14—Cs1i92.2 (4)
O4WA—Cs1—O21iii60.2 (2)Lu1—O14—Cs1i103.33 (13)
O13ii—Cs1—O14i97.84 (11)N11—C12—C13122.8 (5)
O3W—Cs1—O14i133.79 (12)N11—C12—C18114.0 (5)
O22i—Cs1—O14i52.77 (10)C13—C12—C18123.1 (5)
O2W—Cs1—O14i91.16 (16)C14—C13—C12120.5 (7)
O4WA—Cs1—O14i90.54 (19)C14—C13—Cs2x123.1 (7)
O21iii—Cs1—O14i148.13 (12)C12—C13—Cs2x95.2 (4)
O13ii—Cs1—O11144.99 (12)C14—C13—H13119.7
O3W—Cs1—O1184.68 (12)C12—C13—H13119.7
O22i—Cs1—O1152.66 (10)Cs2x—C13—H1350.1
O2W—Cs1—O1197.89 (14)C13—C14—C15119.3 (7)
O4WA—Cs1—O11114.7 (2)C13—C14—H14120.4
O21iii—Cs1—O11126.59 (13)C15—C14—H14120.4
O14i—Cs1—O1151.67 (10)C16—C15—C14115.9 (6)
O13ii—Cs1—O4WB84.6 (3)C16—C15—H15122.1
O3W—Cs1—O4WB135.4 (3)C14—C15—H15122.1
O22i—Cs1—O4WB48.2 (3)N11—C16—C15121.9 (5)
O2W—Cs1—O4WB141.8 (3)N11—C16—C17113.3 (5)
O4WA—Cs1—O4WB16.4 (3)C15—C16—C17124.8 (5)
O21iii—Cs1—O4WB74.7 (4)O12—C17—O11127.0 (7)
O14i—Cs1—O4WB74.8 (4)O12—C17—C16117.5 (6)
O11—Cs1—O4WB100.4 (3)O11—C17—C16115.5 (5)
O13ii—Cs1—O21i128.72 (14)O12—C17—Cs186.7 (3)
O3W—Cs1—O21i90.39 (15)O11—C17—Cs159.6 (3)
O22i—Cs1—O21i39.15 (12)C16—C17—Cs1129.9 (4)
O2W—Cs1—O21i168.30 (16)O13—C18—O14126.1 (6)
O4WA—Cs1—O21i52.14 (18)O13—C18—C12118.4 (6)
O21iii—Cs1—O21i61.01 (17)O14—C18—C12115.5 (5)
O14i—Cs1—O21i91.90 (11)O13—C18—Cs1i78.2 (4)
O11—Cs1—O21i75.32 (12)O14—C18—Cs1i67.2 (3)
O4WB—Cs1—O21i49.9 (3)C12—C18—Cs1i128.8 (4)
O13ii—Cs1—C25i137.62 (15)C22i—N21—C22119.9 (9)
O3W—Cs1—C25i97.62 (14)C22i—N21—Lu1120.0 (4)
O22i—Cs1—C25i21.25 (13)C22—N21—Lu1120.0 (4)
O2W—Cs1—C25i155.39 (16)C25—O21—Cs1xi121.5 (5)
O4WA—Cs1—C25i61.7 (2)C25—O21—Cs1i81.1 (4)
O21iii—Cs1—C25i81.26 (15)Cs1xi—O21—Cs1i92.82 (13)
O14i—Cs1—C25i73.18 (12)C25—O22—Lu1125.2 (4)
O11—Cs1—C25i57.51 (13)C25—O22—Cs1i94.4 (4)
O4WB—Cs1—C25i53.1 (3)Lu1—O22—Cs1i108.45 (15)
O21i—Cs1—C25i20.31 (14)N21—C22—C23122.8 (7)
O13ii—Cs1—O13i61.34 (14)N21—C22—C25114.3 (6)
O3W—Cs1—O13i160.15 (13)C23—C22—C25122.8 (6)
O22i—Cs1—O13i74.71 (11)C24—C23—C22114.3 (8)
O2W—Cs1—O13i82.72 (16)C24—C23—Cs1xi124.7 (4)
O4WA—Cs1—O13i74.07 (18)C22—C23—Cs1xi98.5 (4)
O21iii—Cs1—O13i129.85 (12)C24—C23—H23122.8
O14i—Cs1—O13i37.82 (10)C22—C23—H23122.8
O11—Cs1—O13i89.41 (11)Cs1xi—C23—H2348.6
O4WB—Cs1—O13i64.3 (3)C23i—C24—C23125.6 (11)
O21i—Cs1—O13i106.43 (12)C23i—C24—H24117.2
C25i—Cs1—O13i95.10 (14)C23—C24—H24117.2
O12—Cs2—O12iv125.26 (18)O21—C25—O22127.3 (7)
O12—Cs2—O13v138.44 (13)O21—C25—C22119.0 (6)
O12iv—Cs2—O13v91.16 (13)O22—C25—C22113.6 (5)
O12—Cs2—O13vi91.16 (13)O21—C25—Cs1i78.6 (4)
O12iv—Cs2—O13vi138.44 (13)O22—C25—Cs1i64.4 (3)
O13v—Cs2—O13vi66.60 (18)C22—C25—Cs1i133.9 (4)
O12—Cs2—O4WAvii134.6 (2)Cs1—O3W—Cs2119.00 (16)
O12iv—Cs2—O4WAvii58.0 (2)Cs1—O3W—Cs1iv91.19 (14)
O13v—Cs2—O4WAvii79.26 (18)Cs2—O3W—Cs1iv104.99 (14)
O13vi—Cs2—O4WAvii82.77 (19)Cs2xii—O4WA—Cs191.3 (2)
O12—Cs2—O4WAviii58.0 (2)Cs2xii—O4WB—Cs188.6 (4)
O12iv—Cs2—O4WAviii134.6 (2)
Symmetry codes: (i) x, y, z; (ii) x+2, y, z1/2; (iii) x+1, y, z1/2; (iv) x+1, y, z1/2; (v) x+3/2, y1/2, z1/2; (vi) x1/2, y1/2, z; (vii) x1/2, y1/2, z; (viii) x+3/2, y1/2, z1/2; (ix) x+2, y, z+1/2; (x) x+3/2, y1/2, z+1/2; (xi) x+1, y, z+1/2; (xii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaCs3[Lu(C7H3NO4)3]·8H2O
Mr1213.14
Crystal system, space groupOrthorhombic, C2221
Temperature (K)100
a, b, c (Å)10.0406 (2), 17.8109 (6), 18.4221 (5)
V3)3294.46 (16)
Z4
Radiation typeMo Kα
µ (mm1)6.36
Crystal size (mm)0.20 × 0.19 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur-Sapphire3
diffractometer
Absorption correctionGaussian
(ABSORB; DeTitta, 1985)
Tmin, Tmax0.308, 0.425
No. of measured, independent and
observed [I > 2σ(I)] reflections
51066, 3520, 3491
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.46
No. of reflections3520
No. of parameters208
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0149P)2 + 27.044P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.00, 0.94
Absolute structureFlack (1983),1501 Friedel pairs
Absolute structure parameter0.270 (12)

Computer programs: CrysAlis CCD (Oxford Diffraction 2006), CrysAlis RED (Oxford Diffraction 2006), SORTAV (Blessing, 1989), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1989). J. Appl. Cryst. 22, 396–397.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrayshaw, P. A., Bünzli, J.-C. G., Foidevaux, P., Harrowfield, J. M., Kim, Y. & Sobolev, A. N. (1995). Inorg. Chem. 34, 2068–2076.  CrossRef CAS Web of Science Google Scholar
First citationDeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMurray, G. M., Sarrio, R. M. & Peterson, J. R. (1990). Inorg. Chim. Acta, 176, 233–240.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSénéchal, K., Toupet, L., Ledoux, I., Zyss, J., Le Bozec, H. & Maury, O. (2004). Chem. Commun. pp. 2180–2181.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTancrez, N., Feuvrie, C., Ledoux, I., Zyss, J., Toupet, L., Le Bozec, H. & Maury, O. (2005). J. Am. Chem. Soc. 127, 13474–13475.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1280-m1281
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds