organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2S)-2-Carb­oxy-1-(3-pyridiniometh­yl)pyrrolidin-1-ium dichloride hemihydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 5 September 2008; accepted 11 September 2008; online 17 September 2008)

In the title mol­ecule, C11H16N2O22+·2Cl·0.5H2O, all N atoms are protonated. In the crystal structure, the organic cation and Cl ions are linked by N—H⋯Cl and O—H⋯Cl hydrogen bonds, forming a one-dimensional infinite ribbon extending parallel to the (110) plane.

Related literature

For the chemistry of amino acid derivatives, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o974.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, o1460.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16N2O22+·2Cl·0.5H2O

  • Mr = 288.17

  • Monoclinic, C 2

  • a = 13.070 (5) Å

  • b = 6.9215 (15) Å

  • c = 15.027 (5) Å

  • β = 97.90 (2)°

  • V = 1346.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 298 (2) K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.892, Tmax = 0.918

  • 6833 measured reflections

  • 3154 independent reflections

  • 2893 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.07

  • 3154 reflections

  • 172 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1420 Friedel pairs

  • Flack parameter: 0.02 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯Cl2 0.82 2.22 2.9869 (19) 155
N1—H1A⋯Cl1 0.86 2.19 2.9980 (19) 157
N2—H2⋯Cl2i 0.91 2.27 3.1405 (18) 159
O1W—H1W⋯Cl2ii 0.90 2.46 3.342 (15) 166
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Amino acid derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Fu et al. 2007; Dai & Fu 2008; Wen 2008). We report here the crystal structure of the title compound, 1-((pyridin-3-yl)methyl)pyrrolidine-2-carboxylic acid-1, 1'-ium-dichloride.

In the title compound (Fig.1), the N1 and N2 atoms of the pyrrolidine and pyridine ring are protonated. The two rings are linked by methylene bridge. Bond lengths and angles lie within normal ranges.

In the crystal structure, the organic cation and Cl- ions are linked to form a one-dimentional infinite ribbon developping parallel to the (1 1 0) plane through N—H···Cl and O—H···Cl hydrogen bonds (Table 1, Fig.2).

Related literature top

For the chemistry of amino acid derivatives, see: Fu et al. (2007); Dai & Fu (2008); Wen (2008).

Experimental top

1-((pyridin-3-yl)methyl)pyrrolidine-2-carboxylic acid (3 mmol) was dissolved in the solution of ethanol (20 ml) and hydrochloric acid (1 ml). The solution was allowed to evaporate to obtain colourless block-shaped crystals of the title compound for X-ray analysis.

Refinement top

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic), 0.97 Å (methylene), N–H = 0.86 Å (N1), 0.91 Å (N2) and O–H = 0.85 Å with Uiso(H) = 1.2Ueq(C or N) and Uiso(H) = 1.5Ueq(O).

One of the pyrrolidine rings is disordered with the C8 atom statistically distributed over two positions. The solvate water molecule is also disordered around an inversion center. These disorders were treated using the tools (SAME, PART) available in SHELXL-97 (Sheldrick, 2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Solvent water molecule is omitted for clarity. H atoms are represented as small sphere of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(1S,2S)-2-Carboxy-1-(3-pyridiniomethyl)pyrrolidin-1-ium dichloride hemihydrate top
Crystal data top
C11H16N2O22+·2Cl·0.5H2OF(000) = 604
Mr = 288.17Dx = 1.416 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 3101 reflections
a = 13.070 (5) Åθ = 3.2–27.5°
b = 6.9215 (15) ŵ = 0.48 mm1
c = 15.027 (5) ÅT = 298 K
β = 97.90 (2)°Block, colorless
V = 1346.5 (7) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3154 independent reflections
Radiation source: fine-focus sealed tube2893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 13.6612 pixels mm-1θmax = 27.9°, θmin = 2.7°
ω scansh = 1717
Absorption correction: multi-scan
(CrystalClea; Rigaku, 2005)
k = 99
Tmin = 0.892, Tmax = 0.918l = 1919
6833 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.0829P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3154 reflectionsΔρmax = 0.16 e Å3
172 parametersΔρmin = 0.21 e Å3
4 restraintsAbsolute structure: Flack (1983), 1420 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Crystal data top
C11H16N2O22+·2Cl·0.5H2OV = 1346.5 (7) Å3
Mr = 288.17Z = 4
Monoclinic, C2Mo Kα radiation
a = 13.070 (5) ŵ = 0.48 mm1
b = 6.9215 (15) ÅT = 298 K
c = 15.027 (5) Å0.24 × 0.20 × 0.18 mm
β = 97.90 (2)°
Data collection top
Rigaku Mercury2
diffractometer
3154 independent reflections
Absorption correction: multi-scan
(CrystalClea; Rigaku, 2005)
2893 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.918Rint = 0.020
6833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.16 e Å3
S = 1.07Δρmin = 0.21 e Å3
3154 reflectionsAbsolute structure: Flack (1983), 1420 Friedel pairs
172 parametersAbsolute structure parameter: 0.02 (5)
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.49977 (16)0.5154 (3)0.12620 (12)0.0360 (4)
H10.48940.64810.12860.043*
C20.43049 (14)0.3904 (3)0.15703 (11)0.0314 (4)
C30.44775 (16)0.1940 (3)0.15117 (15)0.0438 (5)
H30.40140.10660.17040.053*
C40.5344 (2)0.1274 (3)0.11651 (17)0.0515 (6)
H40.54710.00450.11360.062*
C50.60084 (15)0.2572 (4)0.08674 (13)0.0421 (5)
H50.65850.21420.06260.051*
C60.33723 (16)0.4708 (4)0.19263 (13)0.0404 (5)
H6A0.31330.58470.15830.049*
H6B0.28220.37570.18490.049*
C70.40028 (17)0.3566 (3)0.35056 (14)0.0421 (5)0.50
H710.39000.23560.31800.051*0.50
H720.47360.37230.37070.051*0.50
C80.3426 (3)0.3553 (7)0.4284 (3)0.0439 (10)0.50
H810.38870.33270.48370.053*0.50
H820.28990.25560.42170.053*0.50
C90.29262 (18)0.5601 (4)0.42867 (14)0.0474 (5)0.50
H910.23060.55870.45740.057*0.50
H920.34070.65440.45820.057*0.50
C7'0.40028 (17)0.3566 (3)0.35056 (14)0.0421 (5)0.50
H71'0.47180.32710.34550.051*0.50
H72'0.35860.24150.33760.051*0.50
C8'0.3884 (4)0.4405 (8)0.4435 (3)0.0474 (11)0.50
H81'0.38160.33790.48620.057*0.50
H82'0.44770.51940.46610.057*0.50
C9'0.29262 (18)0.5601 (4)0.42867 (14)0.0474 (5)0.50
H91'0.30310.68080.46140.057*0.50
H92'0.23580.49160.44980.057*0.50
C100.26803 (14)0.5995 (3)0.32803 (12)0.0313 (4)
H100.20750.52290.30380.038*
C110.24701 (14)0.8082 (3)0.30450 (12)0.0346 (4)
Cl10.67434 (4)0.78893 (6)0.01140 (3)0.04105 (13)
Cl20.06792 (4)1.25793 (8)0.32514 (4)0.04764 (15)
N10.58244 (13)0.4454 (3)0.09258 (11)0.0382 (4)
H1A0.62520.52560.07410.046*
N20.36060 (11)0.5234 (2)0.29028 (9)0.0285 (3)
H20.40980.61730.29590.034*
O10.16413 (12)0.8657 (3)0.33754 (12)0.0583 (5)
H1B0.15300.97970.32490.088*
O20.29780 (12)0.9077 (2)0.26191 (11)0.0534 (4)
O1W0.4711 (9)0.0105 (7)0.4873 (10)0.123 (5)0.50
H1W0.47290.07530.53960.185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0464 (12)0.0296 (10)0.0320 (9)0.0014 (8)0.0055 (8)0.0005 (7)
C20.0344 (9)0.0324 (10)0.0279 (9)0.0017 (8)0.0065 (7)0.0020 (7)
C30.0482 (13)0.0338 (11)0.0545 (13)0.0074 (9)0.0249 (10)0.0030 (9)
C40.0657 (16)0.0318 (11)0.0635 (14)0.0076 (10)0.0314 (12)0.0003 (10)
C50.0372 (9)0.0516 (13)0.0401 (10)0.0091 (10)0.0140 (8)0.0024 (9)
C60.0343 (10)0.0552 (14)0.0321 (9)0.0065 (9)0.0059 (8)0.0093 (8)
C70.0484 (12)0.0362 (11)0.0434 (11)0.0035 (9)0.0125 (9)0.0089 (9)
C80.038 (2)0.050 (3)0.044 (2)0.004 (2)0.0081 (19)0.010 (2)
C90.0525 (13)0.0551 (15)0.0377 (11)0.0030 (11)0.0174 (9)0.0035 (10)
C7'0.0484 (12)0.0362 (11)0.0434 (11)0.0035 (9)0.0125 (9)0.0089 (9)
C8'0.057 (3)0.050 (3)0.037 (2)0.002 (2)0.013 (2)0.007 (2)
C9'0.0525 (13)0.0551 (15)0.0377 (11)0.0030 (11)0.0174 (9)0.0035 (10)
C100.0264 (9)0.0338 (10)0.0355 (9)0.0026 (7)0.0110 (7)0.0032 (7)
C110.0337 (9)0.0380 (11)0.0340 (9)0.0001 (8)0.0111 (7)0.0036 (8)
Cl10.0415 (2)0.0343 (3)0.0504 (3)0.0046 (2)0.01712 (19)0.0065 (2)
Cl20.0374 (2)0.0372 (3)0.0681 (3)0.0070 (2)0.0062 (2)0.0065 (2)
N10.0363 (8)0.0447 (10)0.0351 (8)0.0105 (7)0.0098 (7)0.0028 (7)
N20.0252 (7)0.0299 (8)0.0315 (7)0.0032 (6)0.0077 (6)0.0023 (6)
O10.0527 (9)0.0428 (9)0.0882 (12)0.0126 (8)0.0411 (9)0.0056 (9)
O20.0530 (9)0.0414 (9)0.0724 (10)0.0029 (8)0.0320 (8)0.0112 (8)
O1W0.201 (15)0.071 (3)0.112 (8)0.044 (5)0.077 (9)0.033 (5)
Geometric parameters (Å, º) top
C1—N11.344 (3)C8—C91.561 (5)
C1—C21.378 (3)C8—H810.9700
C1—H10.9300C8—H820.9700
C2—C31.383 (3)C9—C101.527 (3)
C2—C61.504 (3)C9—H910.9700
C3—C41.389 (3)C9—H920.9700
C3—H30.9300C8'—H81'0.9700
C4—C51.366 (3)C8'—H82'0.9700
C4—H40.9300C10—N21.501 (2)
C5—N11.330 (3)C10—C111.503 (3)
C5—H50.9300C10—H100.9800
C6—N21.502 (2)C11—O21.201 (2)
C6—H6A0.9700C11—O11.314 (2)
C6—H6B0.9700N1—H1A0.8600
C7—C81.476 (5)N2—H20.9100
C7—N21.514 (3)O1—H1B0.8200
C7—H710.9700O1W—H1W0.9015
C7—H720.9700
N1—C1—C2119.96 (19)C7—C8—H82110.8
N1—C1—H1120.0C9—C8—H82110.8
C2—C1—H1120.0H81—C8—H82108.9
C1—C2—C3118.38 (18)C10—C9—C8101.0 (2)
C1—C2—C6119.32 (19)C10—C9—H91111.6
C3—C2—C6122.27 (18)C8—C9—H91111.6
C2—C3—C4119.93 (19)C10—C9—H92111.6
C2—C3—H3120.0C8—C9—H92111.6
C4—C3—H3120.0H91—C9—H92109.4
C5—C4—C3119.5 (2)H81'—C8'—H82'108.8
C5—C4—H4120.3N2—C10—C11112.30 (15)
C3—C4—H4120.3N2—C10—C9103.93 (16)
N1—C5—C4119.58 (19)C11—C10—C9114.30 (16)
N1—C5—H5120.2N2—C10—H10108.7
C4—C5—H5120.2C11—C10—H10108.7
N2—C6—C2111.79 (16)C9—C10—H10108.7
N2—C6—H6A109.3O2—C11—O1124.9 (2)
C2—C6—H6A109.3O2—C11—C10125.44 (18)
N2—C6—H6B109.3O1—C11—C10109.62 (16)
C2—C6—H6B109.3C5—N1—C1122.67 (18)
H6A—C6—H6B107.9C5—N1—H1A118.7
C8—C7—N2108.0 (2)C1—N1—H1A118.7
C8—C7—H71110.1C10—N2—C6112.84 (14)
N2—C7—H71110.1C10—N2—C7105.62 (14)
C8—C7—H72110.1C6—N2—C7114.01 (16)
N2—C7—H72110.1C10—N2—H2108.0
H71—C7—H72108.4C6—N2—H2108.0
C7—C8—C9104.8 (3)C7—N2—H2108.0
C7—C8—H81110.8C11—O1—H1B109.5
C9—C8—H81110.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl20.822.222.9869 (19)155
N1—H1A···Cl10.862.192.9980 (19)157
N2—H2···Cl2i0.912.273.1405 (18)159
O1W—H1W···Cl2ii0.902.463.342 (15)166
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y3/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H16N2O22+·2Cl·0.5H2O
Mr288.17
Crystal system, space groupMonoclinic, C2
Temperature (K)298
a, b, c (Å)13.070 (5), 6.9215 (15), 15.027 (5)
β (°) 97.90 (2)
V3)1346.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClea; Rigaku, 2005)
Tmin, Tmax0.892, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
6833, 3154, 2893
Rint0.020
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.07
No. of reflections3154
No. of parameters172
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21
Absolute structureFlack (1983), 1420 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003); ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···Cl20.822.222.9869 (19)154.9
N1—H1A···Cl10.862.192.9980 (19)156.7
N2—H2···Cl2i0.912.273.1405 (18)159.4
O1W—H1W···Cl2ii0.902.463.342 (15)166.1
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y3/2, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, o1460.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds