organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-(5-Hydr­­oxy-2-methyl­benzyl­­idene­amino)-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Chemistry, Lishui University, Lishui 323000, People's Republic of China
*Correspondence e-mail: zjlsxyhx@126.com

(Received 15 September 2008; accepted 17 September 2008; online 27 September 2008)

The title compound, C19H19N3O2, is a Schiff base compound derived from 4-amino­anti­pyrine and 5-hydr­oxy-2-methyl­benzaldehyde. The mol­ecule adopts a trans configuration about the central C=N bond. There is an intra­molecular O—H⋯N hydrogen bond. Futhermore, weak C—H⋯O hydrogen bonds lead to the formation of a chain developing parallel to the b axis.

Related literature

For related literature, see: Alemi & Shaabani (2000[Alemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov. 47, 363-369.]); Kim & Shin (1999[Kim, G. J. & Shin, J. H. (1999). Catal. Lett. 63, 83-89.]); Yan et al. (2006[Yan, G.-B., Yang, M.-H. & Zheng, Y.-F. (2006). Acta Cryst. E62, m3481-m3482.]); Zheng et al. (2006[Zheng, Y.-F., Yan, G.-B. & Gu, Y.-B. (2006). Acta Cryst. E62, o5134-o5135.]); You et al. (2006[You, Z.-L., Wang, J. & Chi, J.-Y. (2006). Acta Cryst. E62, o1652-o1653.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19N3O2

  • Mr = 321.37

  • Monoclinic, P 21 /n

  • a = 12.030 (2) Å

  • b = 7.1400 (14) Å

  • c = 20.210 (4) Å

  • β = 104.01 (3)°

  • V = 1684.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.28 × 0.27 × 0.23 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.971

  • 12992 measured reflections

  • 3038 independent reflections

  • 2101 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.117

  • S = 1.11

  • 3038 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.90 2.6275 (19) 148
C10—H10C⋯O1i 0.96 2.46 3.386 (2) 163
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The design, synthesis, characterization, and properties of Schiff bases and Schiff base complexes. (Yan et al., 2006; Zheng et al., 2006; You et al., 2006) are still of great interest. Schiff bases that have solvent dependent UV/vis spectra (solvatochromicity) can be suitable NLO active materials (Alemi & Shaabani, 2000). They are also useful in asymmetric oxidation of methyl phenyl sulfide (Kim & Shin, 1999).

The molecule adopts trans configuration about the central C=N bond (Fig. 1). There is an intramolecular O-H···N hydrogen bond. Futhermore, weak C-H···O hydrogen bonds lead to the formation of a chain developping parallel to the b axis (Table 1, Fig. 2).

Related literature top

For related literature, see: Alemi & Shaabani (2000); Kim & Shin (1999); Yan et al. (2006); Zheng et al. (2006); You et al. (2006).

Experimental top

Under nitrogen, a mixture of 5-hydroxy-2-methylbenzaldehyde (1.36 g,10 mmol) and 4-amino-1,2-dihydro-1,5-dimethyl -1-phenylpyrazol-3-one (2.03 g, 10 mmol) in absolute ethanol (120 ml) was refluxed for about 3 h to yield a yellow precipitate. The product was collected by vacuum filtration and washed with ethanol. The crude solid was redissolved in CH2Cl2 (100 ml) and washed with water (2*10 ml)and brine(10 ml). After dried over Na2SO4, the solvent was removed under vacuum, and yellow solid was isolated in yield 92% (3.5 g). Colourless single crystals of the compound suitable for X-ray analysis were grown from CH2Cl2 and absolute ethanol(5:1) by slow evaporation of the solvent at room temperature over a period of about a week.

Refinement top

All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl, O). The H attached to C18 are statistically disordered over two positions.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain through C-H···O hydrogen bondings displayed as dashed line. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) x, 1+y, z]
(E)-4-(5-Hydroxy-2-methylbenzylideneamino)-1,5-dimethyl-2-phenyl- 1H-pyrazol-3(2H)-one top
Crystal data top
C19H19N3O2F(000) = 680
Mr = 321.37Dx = 1.267 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3038 reflections
a = 12.030 (2) Åθ = 3.0–25.2°
b = 7.1400 (14) ŵ = 0.08 mm1
c = 20.210 (4) ÅT = 298 K
β = 104.01 (3)°Block, colourless
V = 1684.4 (6) Å30.28 × 0.27 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3038 independent reflections
Radiation source: fine-focus sealed tube2101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.965, Tmax = 0.971k = 88
12992 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.1685P]
where P = (Fo2 + 2Fc2)/3
3038 reflections(Δ/σ)max = 0.003
220 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H19N3O2V = 1684.4 (6) Å3
Mr = 321.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.030 (2) ŵ = 0.08 mm1
b = 7.1400 (14) ÅT = 298 K
c = 20.210 (4) Å0.28 × 0.27 × 0.23 mm
β = 104.01 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
3038 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2101 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.971Rint = 0.026
12992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.11Δρmax = 0.19 e Å3
3038 reflectionsΔρmin = 0.18 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.54536 (10)0.08488 (19)0.09989 (7)0.0484 (4)
N20.84821 (10)0.10229 (18)0.18740 (7)0.0478 (4)
N30.82904 (11)0.27459 (18)0.15274 (7)0.0489 (4)
O10.74035 (9)0.16626 (16)0.18989 (7)0.0607 (4)
O20.35066 (11)0.19101 (19)0.01845 (7)0.0721 (4)
H20.41770.19990.03990.108*
C11.03702 (13)0.0611 (2)0.16517 (8)0.0500 (4)
H11.01780.14480.12890.060*
C21.14339 (14)0.0241 (3)0.18084 (9)0.0569 (5)
H2A1.19590.00450.15530.068*
C31.17288 (15)0.1505 (3)0.23369 (11)0.0659 (5)
H31.24450.20760.24360.079*
C41.09553 (15)0.1913 (3)0.27139 (10)0.0667 (5)
H41.11440.27760.30680.080*
C50.98929 (14)0.1047 (2)0.25717 (9)0.0549 (5)
H50.93780.13110.28360.066*
C60.95980 (12)0.0212 (2)0.20351 (8)0.0433 (4)
C70.74648 (13)0.0029 (2)0.17136 (9)0.0469 (4)
C80.66180 (13)0.1204 (2)0.13035 (8)0.0454 (4)
C90.71364 (13)0.2853 (2)0.12208 (8)0.0472 (4)
C100.66222 (17)0.4584 (2)0.08666 (11)0.0650 (5)
H10A0.58260.43720.06590.097*
H10B0.70130.49120.05210.097*
H10C0.66960.55880.11910.097*
C110.89730 (16)0.4347 (2)0.18612 (10)0.0618 (5)
H11A0.88690.53900.15520.093*
H11B0.97680.40060.19860.093*
H11C0.87270.46890.22630.093*
C120.49748 (13)0.0712 (2)0.10893 (9)0.0494 (4)
H120.54030.16340.13620.059*
C130.37643 (13)0.1053 (2)0.07677 (8)0.0469 (4)
C140.30773 (14)0.0258 (2)0.03279 (9)0.0524 (4)
C150.19260 (15)0.0150 (3)0.00338 (9)0.0630 (5)
H150.14750.07100.02580.076*
C160.14615 (15)0.1806 (3)0.01736 (9)0.0625 (5)
H160.06940.20500.00250.075*
C170.21076 (14)0.3139 (3)0.06057 (9)0.0581 (5)
C180.15794 (18)0.4936 (3)0.07672 (13)0.0859 (7)
H18A0.21500.56760.10700.129*0.50
H18B0.12830.56210.03530.129*0.50
H18C0.09680.46600.09810.129*0.50
H18D0.07840.49620.05330.129*0.50
H18E0.16510.50170.12500.129*0.50
H18F0.19660.59780.06220.129*0.50
C190.32577 (13)0.2731 (2)0.08928 (9)0.0546 (4)
H190.37030.36110.11780.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0449 (8)0.0456 (8)0.0570 (8)0.0014 (6)0.0167 (6)0.0045 (6)
N20.0432 (7)0.0360 (7)0.0657 (9)0.0001 (6)0.0162 (6)0.0038 (6)
N30.0522 (8)0.0338 (7)0.0632 (9)0.0023 (6)0.0190 (7)0.0010 (6)
O10.0527 (7)0.0390 (7)0.0894 (9)0.0031 (5)0.0155 (6)0.0106 (6)
O20.0633 (8)0.0671 (9)0.0836 (10)0.0044 (7)0.0131 (7)0.0225 (7)
C10.0485 (9)0.0541 (10)0.0469 (9)0.0024 (8)0.0108 (7)0.0004 (8)
C20.0462 (9)0.0640 (12)0.0617 (11)0.0030 (8)0.0157 (8)0.0062 (9)
C30.0460 (10)0.0657 (13)0.0818 (14)0.0045 (9)0.0072 (9)0.0020 (11)
C40.0594 (11)0.0615 (12)0.0729 (13)0.0021 (9)0.0040 (9)0.0177 (10)
C50.0528 (10)0.0541 (11)0.0582 (11)0.0057 (8)0.0139 (8)0.0056 (9)
C60.0412 (8)0.0386 (9)0.0492 (9)0.0047 (7)0.0092 (7)0.0046 (7)
C70.0444 (9)0.0396 (9)0.0596 (10)0.0003 (7)0.0180 (7)0.0028 (8)
C80.0449 (9)0.0402 (9)0.0543 (10)0.0023 (7)0.0182 (7)0.0031 (7)
C90.0494 (9)0.0414 (9)0.0536 (10)0.0036 (7)0.0176 (7)0.0031 (7)
C100.0704 (12)0.0459 (11)0.0794 (13)0.0078 (9)0.0196 (10)0.0107 (9)
C110.0649 (11)0.0410 (10)0.0824 (13)0.0108 (8)0.0234 (10)0.0065 (9)
C120.0448 (9)0.0455 (10)0.0584 (10)0.0048 (7)0.0137 (7)0.0030 (8)
C130.0424 (8)0.0487 (10)0.0507 (9)0.0034 (7)0.0135 (7)0.0051 (8)
C140.0536 (10)0.0530 (11)0.0520 (10)0.0042 (8)0.0152 (8)0.0028 (8)
C150.0528 (10)0.0784 (14)0.0532 (11)0.0096 (10)0.0042 (8)0.0047 (10)
C160.0475 (10)0.0798 (14)0.0563 (11)0.0026 (9)0.0051 (8)0.0087 (10)
C170.0498 (9)0.0611 (11)0.0628 (11)0.0055 (9)0.0122 (8)0.0103 (9)
C180.0655 (13)0.0754 (15)0.1124 (18)0.0206 (11)0.0128 (12)0.0031 (13)
C190.0469 (9)0.0509 (10)0.0647 (11)0.0027 (8)0.0108 (8)0.0023 (9)
Geometric parameters (Å, º) top
N1—C121.288 (2)C10—H10A0.9600
N1—C81.410 (2)C10—H10B0.9600
N2—C71.405 (2)C10—H10C0.9600
N2—N31.4068 (18)C11—H11A0.9600
N2—C61.425 (2)C11—H11B0.9600
N3—C91.379 (2)C11—H11C0.9600
N3—C111.472 (2)C12—C131.464 (2)
O1—C71.2330 (19)C12—H120.9300
O2—C141.347 (2)C13—C191.395 (2)
O2—H20.8200C13—C141.412 (2)
C1—C61.376 (2)C14—C151.399 (2)
C1—C21.383 (2)C15—C161.366 (3)
C1—H10.9300C15—H150.9300
C2—C31.378 (3)C16—C171.394 (3)
C2—H2A0.9300C16—H160.9300
C3—C41.369 (3)C17—C191.395 (2)
C3—H30.9300C17—C181.503 (3)
C4—C51.386 (3)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.387 (2)C18—H18C0.9600
C5—H50.9300C18—H18D0.9600
C7—C81.446 (2)C18—H18E0.9600
C8—C91.361 (2)C18—H18F0.9600
C9—C101.486 (2)C19—H190.9300
C12—N1—C8121.67 (14)H11A—C11—H11C109.5
C7—N2—N3108.89 (12)H11B—C11—H11C109.5
C7—N2—C6123.74 (13)N1—C12—C13120.77 (15)
N3—N2—C6120.05 (12)N1—C12—H12119.6
C9—N3—N2107.34 (12)C13—C12—H12119.6
C9—N3—C11123.52 (14)C19—C13—C14117.94 (15)
N2—N3—C11116.40 (13)C19—C13—C12119.56 (15)
C14—O2—H2109.5C14—C13—C12122.50 (16)
C6—C1—C2119.58 (16)O2—C14—C15118.85 (16)
C6—C1—H1120.2O2—C14—C13121.29 (15)
C2—C1—H1120.2C15—C14—C13119.86 (17)
C3—C2—C1121.07 (18)C16—C15—C14120.31 (17)
C3—C2—H2A119.5C16—C15—H15119.8
C1—C2—H2A119.5C14—C15—H15119.8
C4—C3—C2119.25 (17)C15—C16—C17121.76 (17)
C4—C3—H3120.4C15—C16—H16119.1
C2—C3—H3120.4C17—C16—H16119.1
C3—C4—C5120.45 (18)C16—C17—C19117.67 (17)
C3—C4—H4119.8C16—C17—C18121.21 (17)
C5—C4—H4119.8C19—C17—C18121.12 (18)
C4—C5—C6119.99 (17)C17—C18—H18A109.5
C4—C5—H5120.0C17—C18—H18B109.5
C6—C5—H5120.0H18A—C18—H18B109.5
C1—C6—C5119.64 (15)C17—C18—H18C109.5
C1—C6—N2120.95 (15)H18A—C18—H18C109.5
C5—C6—N2119.37 (14)H18B—C18—H18C109.5
O1—C7—N2123.25 (15)C17—C18—H18D109.5
O1—C7—C8131.64 (15)H18A—C18—H18D141.1
N2—C7—C8105.10 (14)H18B—C18—H18D56.3
C9—C8—N1122.57 (15)H18C—C18—H18D56.3
C9—C8—C7108.46 (14)C17—C18—H18E109.5
N1—C8—C7128.93 (15)H18A—C18—H18E56.3
C8—C9—N3109.78 (14)H18B—C18—H18E141.1
C8—C9—C10128.96 (15)H18C—C18—H18E56.3
N3—C9—C10121.26 (15)H18D—C18—H18E109.5
C9—C10—H10A109.5C17—C18—H18F109.5
C9—C10—H10B109.5H18A—C18—H18F56.3
H10A—C10—H10B109.5H18B—C18—H18F56.3
C9—C10—H10C109.5H18C—C18—H18F141.1
H10A—C10—H10C109.5H18D—C18—H18F109.5
H10B—C10—H10C109.5H18E—C18—H18F109.5
N3—C11—H11A109.5C13—C19—C17122.45 (16)
N3—C11—H11B109.5C13—C19—H19118.8
H11A—C11—H11B109.5C17—C19—H19118.8
N3—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.902.6275 (19)148
C10—H10C···O1i0.962.463.386 (2)163
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H19N3O2
Mr321.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.030 (2), 7.1400 (14), 20.210 (4)
β (°) 104.01 (3)
V3)1684.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.27 × 0.23
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
12992, 3038, 2101
Rint0.026
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.117, 1.11
No. of reflections3038
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.902.6275 (19)147.6
C10—H10C···O1i0.962.463.386 (2)162.8
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081) for financial support.

References

First citationAlemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov. 47, 363–369.  CAS Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKim, G. J. & Shin, J. H. (1999). Catal. Lett. 63, 83–89.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, G.-B., Yang, M.-H. & Zheng, Y.-F. (2006). Acta Cryst. E62, m3481–m3482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Wang, J. & Chi, J.-Y. (2006). Acta Cryst. E62, o1652–o1653.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, Y.-F., Yan, G.-B. & Gu, Y.-B. (2006). Acta Cryst. E62, o5134–o5135.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds