metal-organic compounds
Diaqua(2,5-di-4-pyridyl-1,3,4-thiadiazole-κN2)bis(thiocyanato-κN)nickel(II) dihydrate
aDepartment of Chemistry, Lishui University, Lishui 323000, People's Republic of China
*Correspondence e-mail: zjlsxyhx@126.com
In the title mononuclear complex, [Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O, the NiII atom is located on an inversion center and is octahedrally coordinated by four N atoms from two 2,5-di-4-pyridyl-1,3,4-thiadiazole (bpt) ligands and two thiocyanate molecules forming the equatorial plane; the axial positions are occupied by two O atoms of coordinated water molecules. O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds, involving the uncoordinated water molecules, result in the formation of a sheet structure developing parallel to (021).
Related literature
For related structures, see: Ma & Yang (2008); Du et al. (2002); Dong et al. (2003); Gudbjarlson et al. (1991). For related literature, see: Su et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808030444/dn2378sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808030444/dn2378Isup2.hkl
Bpt (21 mg,0.6 mmol), NiCl2 (28 mg, 0.9 mmol) and NH4SCN (23 mg,0.8 mmol) were added in methanol. The mixture was heated for one hour under refluxing and stirring. The resulting solution was then cooled to room temperature, and some single crystals were obtained five weeks later.
The hydrgen atoms of water molecule were located from difference Fourier maps and their coordinates were initially refined using restraints (O-H= 0.85 (1)Å and H···H = 1.39 (2)Å with Uiso(H) = 1.5Ueq(O) then their coordinates were fixed in the last stage of
H atoms attached to C atoms were treated as riding with C-H = 0.93Å and Uiso(H) = 1.2Ueq(C).Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O | Z = 1 |
Mr = 727.50 | F(000) = 374 |
Triclinic, P1 | Dx = 1.572 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.0555 (11) Å | Cell parameters from 2721 reflections |
b = 8.3034 (13) Å | θ = 1.4–25.2° |
c = 14.849 (2) Å | µ = 0.96 mm−1 |
α = 104.629 (2)° | T = 298 K |
β = 93.067 (2)° | Block, green |
γ = 112.228 (2)° | 0.26 × 0.21 × 0.17 mm |
V = 768.3 (2) Å3 |
Bruker SMART diffractometer | 2747 independent reflections |
Radiation source: fine-focus sealed tube | 1810 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 25.3°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→5 |
Tmin = 0.789, Tmax = 0.855 | k = −9→9 |
3967 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1149P] where P = (Fo2 + 2Fc2)/3 |
2747 reflections | (Δ/σ)max < 0.001 |
205 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
[Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O | γ = 112.228 (2)° |
Mr = 727.50 | V = 768.3 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.0555 (11) Å | Mo Kα radiation |
b = 8.3034 (13) Å | µ = 0.96 mm−1 |
c = 14.849 (2) Å | T = 298 K |
α = 104.629 (2)° | 0.26 × 0.21 × 0.17 mm |
β = 93.067 (2)° |
Bruker SMART diffractometer | 2747 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1810 reflections with I > 2σ(I) |
Tmin = 0.789, Tmax = 0.855 | Rint = 0.028 |
3967 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.39 e Å−3 |
2747 reflections | Δρmin = −0.51 e Å−3 |
205 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.0397 (3) | |
S1 | −0.0367 (2) | 0.2796 (2) | 0.90422 (9) | 0.0507 (4) | |
S2 | 0.7893 (2) | 0.05582 (18) | 0.46356 (10) | 0.0499 (4) | |
N1 | 0.4008 (5) | 0.4385 (5) | 0.6282 (3) | 0.0370 (9) | |
N2 | 0.3264 (6) | 0.2926 (6) | 0.9413 (3) | 0.0507 (11) | |
N3 | 0.2307 (7) | 0.2566 (6) | 1.0167 (3) | 0.0512 (11) | |
N4 | −0.3536 (7) | 0.1274 (6) | 1.2103 (3) | 0.0530 (11) | |
N5 | 0.6832 (6) | 0.3540 (6) | 0.4939 (3) | 0.0439 (10) | |
O1W | 0.2492 (4) | 0.2685 (4) | 0.4104 (2) | 0.0456 (8) | |
H1WA | 0.1300 | 0.2324 | 0.4268 | 0.068* | |
H1WB | 0.2655 | 0.1751 | 0.3792 | 0.068* | |
C1 | 0.2114 (7) | 0.4119 (6) | 0.6465 (3) | 0.0448 (12) | |
H1 | 0.1217 | 0.4267 | 0.6042 | 0.054* | |
C2 | 0.1394 (7) | 0.3639 (7) | 0.7239 (3) | 0.0479 (13) | |
H2 | 0.0026 | 0.3409 | 0.7317 | 0.058* | |
C3 | 0.2717 (7) | 0.3502 (6) | 0.7897 (3) | 0.0392 (11) | |
C4 | 0.4712 (8) | 0.3790 (7) | 0.7725 (3) | 0.0490 (13) | |
H4 | 0.5656 | 0.3697 | 0.8149 | 0.059* | |
C5 | 0.5267 (7) | 0.4217 (7) | 0.6915 (3) | 0.0454 (12) | |
H5 | 0.6606 | 0.4399 | 0.6803 | 0.054* | |
C6 | 0.2059 (7) | 0.3069 (6) | 0.8769 (3) | 0.0408 (12) | |
C7 | 0.0422 (8) | 0.2485 (7) | 1.0080 (3) | 0.0435 (12) | |
C8 | −0.0933 (7) | 0.2144 (6) | 1.0799 (3) | 0.0395 (11) | |
C9 | −0.0247 (8) | 0.1812 (7) | 1.1595 (3) | 0.0514 (13) | |
H9 | 0.1090 | 0.1867 | 1.1704 | 0.062* | |
C10 | −0.1584 (8) | 0.1398 (8) | 1.2222 (4) | 0.0573 (15) | |
H10 | −0.1108 | 0.1191 | 1.2760 | 0.069* | |
C11 | −0.4142 (8) | 0.1632 (7) | 1.1355 (4) | 0.0516 (13) | |
H11 | −0.5477 | 0.1593 | 1.1273 | 0.062* | |
C12 | −0.2923 (7) | 0.2065 (7) | 1.0682 (3) | 0.0459 (12) | |
H12 | −0.3433 | 0.2298 | 1.0160 | 0.055* | |
C13 | 0.7270 (6) | 0.2306 (7) | 0.4811 (3) | 0.0366 (11) | |
O2W | 0.3283 (5) | −0.0225 (5) | 0.3113 (2) | 0.0604 (10) | |
H2WA | 0.3641 | −0.0509 | 0.3583 | 0.091* | |
H2WB | 0.4342 | 0.0242 | 0.2871 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0396 (5) | 0.0406 (5) | 0.0449 (6) | 0.0187 (4) | 0.0124 (4) | 0.0176 (4) |
S1 | 0.0513 (8) | 0.0705 (10) | 0.0435 (8) | 0.0301 (7) | 0.0153 (6) | 0.0290 (7) |
S2 | 0.0508 (8) | 0.0442 (8) | 0.0686 (9) | 0.0269 (6) | 0.0198 (7) | 0.0260 (7) |
N1 | 0.034 (2) | 0.039 (2) | 0.041 (2) | 0.0152 (17) | 0.0086 (17) | 0.0156 (18) |
N2 | 0.046 (3) | 0.065 (3) | 0.045 (3) | 0.022 (2) | 0.013 (2) | 0.024 (2) |
N3 | 0.051 (3) | 0.066 (3) | 0.042 (2) | 0.023 (2) | 0.015 (2) | 0.027 (2) |
N4 | 0.051 (3) | 0.065 (3) | 0.046 (3) | 0.023 (2) | 0.017 (2) | 0.023 (2) |
N5 | 0.045 (2) | 0.045 (2) | 0.055 (3) | 0.027 (2) | 0.0162 (19) | 0.022 (2) |
O1W | 0.0367 (18) | 0.045 (2) | 0.053 (2) | 0.0146 (15) | 0.0120 (15) | 0.0130 (16) |
C1 | 0.041 (3) | 0.054 (3) | 0.044 (3) | 0.018 (2) | 0.008 (2) | 0.024 (3) |
C2 | 0.037 (3) | 0.058 (3) | 0.048 (3) | 0.014 (2) | 0.010 (2) | 0.024 (3) |
C3 | 0.041 (3) | 0.036 (3) | 0.038 (3) | 0.011 (2) | 0.012 (2) | 0.010 (2) |
C4 | 0.045 (3) | 0.066 (4) | 0.046 (3) | 0.027 (3) | 0.010 (2) | 0.026 (3) |
C5 | 0.042 (3) | 0.057 (3) | 0.045 (3) | 0.024 (2) | 0.018 (2) | 0.021 (3) |
C6 | 0.044 (3) | 0.039 (3) | 0.037 (3) | 0.014 (2) | 0.009 (2) | 0.012 (2) |
C7 | 0.047 (3) | 0.046 (3) | 0.039 (3) | 0.018 (2) | 0.007 (2) | 0.015 (2) |
C8 | 0.044 (3) | 0.038 (3) | 0.037 (3) | 0.016 (2) | 0.008 (2) | 0.013 (2) |
C9 | 0.045 (3) | 0.067 (4) | 0.046 (3) | 0.022 (3) | 0.008 (2) | 0.024 (3) |
C10 | 0.056 (3) | 0.076 (4) | 0.043 (3) | 0.024 (3) | 0.013 (3) | 0.026 (3) |
C11 | 0.043 (3) | 0.055 (3) | 0.059 (4) | 0.021 (3) | 0.011 (3) | 0.019 (3) |
C12 | 0.047 (3) | 0.053 (3) | 0.049 (3) | 0.026 (2) | 0.009 (2) | 0.025 (3) |
C13 | 0.033 (3) | 0.046 (3) | 0.035 (3) | 0.016 (2) | 0.012 (2) | 0.018 (2) |
O2W | 0.057 (2) | 0.061 (2) | 0.054 (2) | 0.0141 (18) | 0.0183 (17) | 0.0132 (19) |
Ni1—N5 | 2.072 (4) | C1—H1 | 0.9300 |
Ni1—N5i | 2.072 (4) | C2—C3 | 1.371 (6) |
Ni1—O1Wi | 2.116 (3) | C2—H2 | 0.9300 |
Ni1—O1W | 2.116 (3) | C3—C4 | 1.385 (6) |
Ni1—N1 | 2.176 (4) | C3—C6 | 1.481 (6) |
Ni1—N1i | 2.176 (4) | C4—C5 | 1.374 (6) |
S1—C7 | 1.723 (5) | C4—H4 | 0.9300 |
S1—C6 | 1.724 (5) | C5—H5 | 0.9300 |
S2—C13 | 1.635 (5) | C7—C8 | 1.480 (6) |
N1—C1 | 1.325 (6) | C8—C12 | 1.380 (6) |
N1—C5 | 1.328 (6) | C8—C9 | 1.383 (6) |
N2—C6 | 1.304 (6) | C9—C10 | 1.373 (7) |
N2—N3 | 1.376 (5) | C9—H9 | 0.9300 |
N3—C7 | 1.303 (6) | C10—H10 | 0.9300 |
N4—C11 | 1.310 (6) | C11—C12 | 1.382 (7) |
N4—C10 | 1.340 (6) | C11—H11 | 0.9300 |
N5—C13 | 1.153 (6) | C12—H12 | 0.9300 |
O1W—H1WA | 0.8510 | O2W—H2WA | 0.8456 |
O1W—H1WB | 0.8497 | O2W—H2WB | 0.8472 |
C1—C2 | 1.371 (6) | ||
N5—Ni1—N5i | 180.000 (2) | C2—C3—C4 | 117.8 (4) |
N5—Ni1—O1Wi | 88.99 (14) | C2—C3—C6 | 121.6 (4) |
N5i—Ni1—O1Wi | 91.01 (14) | C4—C3—C6 | 120.5 (4) |
N5—Ni1—O1W | 91.01 (14) | C5—C4—C3 | 118.6 (4) |
N5i—Ni1—O1W | 88.99 (14) | C5—C4—H4 | 120.7 |
O1Wi—Ni1—O1W | 180.0 | C3—C4—H4 | 120.7 |
N5—Ni1—N1 | 91.17 (14) | N1—C5—C4 | 124.0 (4) |
N5i—Ni1—N1 | 88.83 (14) | N1—C5—H5 | 118.0 |
O1Wi—Ni1—N1 | 86.52 (12) | C4—C5—H5 | 118.0 |
O1W—Ni1—N1 | 93.48 (13) | N2—C6—C3 | 123.7 (4) |
N5—Ni1—N1i | 88.83 (14) | N2—C6—S1 | 113.8 (3) |
N5i—Ni1—N1i | 91.17 (14) | C3—C6—S1 | 122.4 (4) |
O1Wi—Ni1—N1i | 93.48 (13) | N3—C7—C8 | 123.5 (4) |
O1W—Ni1—N1i | 86.52 (12) | N3—C7—S1 | 113.8 (3) |
N1—Ni1—N1i | 180.000 (1) | C8—C7—S1 | 122.7 (4) |
C7—S1—C6 | 87.2 (2) | C12—C8—C9 | 118.1 (4) |
C1—N1—C5 | 116.3 (4) | C12—C8—C7 | 121.8 (4) |
C1—N1—Ni1 | 122.2 (3) | C9—C8—C7 | 119.9 (4) |
C5—N1—Ni1 | 121.4 (3) | C10—C9—C8 | 118.5 (5) |
C6—N2—N3 | 112.5 (4) | C10—C9—H9 | 120.7 |
C7—N3—N2 | 112.7 (4) | C8—C9—H9 | 120.7 |
C11—N4—C10 | 116.8 (4) | N4—C10—C9 | 123.8 (5) |
C13—N5—Ni1 | 159.3 (4) | N4—C10—H10 | 118.1 |
Ni1—O1W—H1WA | 120.3 | C9—C10—H10 | 118.1 |
Ni1—O1W—H1WB | 121.7 | N4—C11—C12 | 124.1 (5) |
H1WA—O1W—H1WB | 107.7 | N4—C11—H11 | 117.9 |
N1—C1—C2 | 124.1 (4) | C12—C11—H11 | 117.9 |
N1—C1—H1 | 118.0 | C8—C12—C11 | 118.6 (4) |
C2—C1—H1 | 118.0 | C8—C12—H12 | 120.7 |
C1—C2—C3 | 119.1 (5) | C11—C12—H12 | 120.7 |
C1—C2—H2 | 120.5 | N5—C13—S2 | 179.7 (4) |
C3—C2—H2 | 120.5 | H2WA—O2W—H2WB | 109.2 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O2W | 0.85 | 1.91 | 2.762 (5) | 175 |
O2W—H2WB···N4ii | 0.85 | 2.00 | 2.833 (5) | 170 |
O1W—H1WA···S2iii | 0.85 | 2.47 | 3.303 (3) | 166 |
O2W—H2WA···S2iv | 0.85 | 2.92 | 3.540 (4) | 132 |
Symmetry codes: (ii) x+1, y, z−1; (iii) x−1, y, z; (iv) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O |
Mr | 727.50 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.0555 (11), 8.3034 (13), 14.849 (2) |
α, β, γ (°) | 104.629 (2), 93.067 (2), 112.228 (2) |
V (Å3) | 768.3 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.96 |
Crystal size (mm) | 0.26 × 0.21 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.789, 0.855 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3967, 2747, 1810 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.143, 1.06 |
No. of reflections | 2747 |
No. of parameters | 205 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.51 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O2W | 0.85 | 1.91 | 2.762 (5) | 174.9 |
O2W—H2WB···N4i | 0.85 | 2.00 | 2.833 (5) | 169.5 |
O1W—H1WA···S2ii | 0.85 | 2.47 | 3.303 (3) | 166.3 |
O2W—H2WA···S2iii | 0.85 | 2.92 | 3.540 (4) | 132.2 |
Symmetry codes: (i) x+1, y, z−1; (ii) x−1, y, z; (iii) −x+1, −y, −z+1. |
Acknowledgements
The author is grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081) for financial support.
References
Bruker (1998). SMART. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Dong, Y.-B., Cheng, J.-Y., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 5699–5706. Web of Science CSD CrossRef PubMed CAS Google Scholar
Du, M., Bu, X.-H., Guo, Y.-M., Liu, H., Batten, S. R., Ribas, J. & Mak, T. C. W. (2002). Inorg. Chem. 41, 4904–4908. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gudbjartson, H., Biradha, K., Poirier, K. M. & Zaworotko, M. J. (1991). J. Am. Chem. Soc. 121, 2599–2600. Web of Science CSD CrossRef Google Scholar
Ma, W.-W. & Yang, M.-H. (2008). Acta Cryst. E64, m630. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, C.-Y., Zheng, X.-J., Gao, S., Li, L.-C. & Jin, L.-P. (2005). Eur. J. Inorg. Chem. pp. 4150–4159. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the last decades, different kinds of metal-organic frameworks (MOFs) have been synthesized by using linear 4,4'-bipyridine, and other bipyridine-like N,N'-donor ligands (Gudbjarlson et al., 1991; Su et al. 2005; Dong et al., 2003). However, the angular N,N'-ligands were less exploited in building the MOFs in the supramolecular chemistry (Du et al., 2002). In this paper, we report the synthesis and characterization of the title compound (I).
the nickel(II) atom located on an inversion center is octahedrally coordinated by four N atoms from two bpt ligands and two thiocyanate molecules forming the equatorial plane, whereas axial positions are occupied by two O atoms of coordinated water molecules (Fig.1). The Ni—N distances are similar with related complexes (Du et al., 2002; Ma & Yang, 2008).
The occurence of O-H···O, O-H···N and O-H···S results in the formation of a two-dimensional sheet structure developping parallel to the (0 2 1) plane (Table 1, Fig.2). The guest water molecule acts as acceptor and donor.