organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Eth­­oxy-4-hy­droxy­benzaldehyde

aDepartment of Environmental Engineering, Anhui University of Technology, Maanshan 243002, People's Republic of China, and bAnalysis and Testing Central Facility, Anhui University of Technology, Maanshan 243002, People's Republic of China
*Correspondence e-mail: farnesene@gmail.com

(Received 20 September 2008; accepted 22 September 2008; online 24 September 2008)

The title compound (ethyl vanillin), C9H10O3, an important food additive and flavouring agent approved by FAO/WHO, has a vanilla odor four times that of vanillin and shows anti­­mutagenic activity. There are two mol­ecules in the asymmetric unit, each having a planar conformation and an intramolecular O—H⋯O bond. Mol­ecules are connected side-by-side, building infinite ribbons along c via inter­molecular O—H⋯O hydrogen bonds between the carbonyl and hydroxyl groups. The ribbons are then packed into layers perpendicular to the a axis.

Related literature

For anti-mutagenic activity, see: Ohta et al. (1986[Ohta, T., Watanabe, M., Watanabe, K., Shirasu, Y. & Kada, T. (1986). Food Chem. Toxicol. 24, 51-54.]). For the synthetic method, see: Gradeff & Murayama (1982[Gradeff, P. S. & Murayama, S. T. (1982). US Patent No. 4 351 962.]). For related literature, see: Li (2008[Li, Y. (2008). Chin. J. Struct. Chem. 27, 1089-1092.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10O3

  • Mr = 166.17

  • Monoclinic, P 21 /c

  • a = 13.7352 (6) Å

  • b = 14.4140 (6) Å

  • c = 8.7890 (4) Å

  • β = 100.742 (3)°

  • V = 1709.55 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.50 × 0.50 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 16625 measured reflections

  • 3934 independent reflections

  • 2581 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.155

  • S = 1.01

  • 3934 reflections

  • 297 parameters

  • All H-atom parameters refined

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O1i 0.79 (3) 2.03 (3) 2.6951 (17) 142 (3)
O2—H1⋯O3 0.79 (3) 2.26 (3) 2.6619 (16) 112 (2)
O12—H14⋯O11ii 0.81 (3) 2.02 (3) 2.7117 (19) 143 (3)
O12—H14⋯O13 0.81 (3) 2.26 (3) 2.6554 (18) 111 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, an ethyl analogue of vanillin, is an important food additive and flavouring agent approved by FAO/WHO. Its vanilla odor is four times stronger than the flavour of vanillin. Now, it is widely used in food, beverage, cigarette and cosmetics. This synthetic compound was reported to show marked anti-mutagenic activity against mutagenicity induced by 4-nitroquinoline-1-oxide, furylfuramide, captan or methylglyoxal, similar to another report (Li, 2008). It was assumed that the anti-mutagenic activity was due to enhancement of an error-free recombinational repair system (Ohta et al., 1986). But the structure of ethyl vanillin has never been reported. we then report herein its crystal structure determination (Fig.1). The crystal structure consists of layers of planar molecules linked as one-dimensional chains (Fig. 2).

Related literature top

For anti-mutagenic activity, see: Ohta et al. (1986). For the synthetic method, see: Gradeff & Murayama (1982). For related literature, see: Li (2008).

Experimental top

One of the synthetic methods was reported by literature(Gradeff & Murayama, 1982). The crude title compound commercially available was recrystallized two times from EtOH/water (1:1) solution, and then colourless block crystals were collected after slow evaporation at room temperature.

Refinement top

The structure was solved successfully with direct method. Due to the high quality of diffraction data, R(int) = 0.0252, all H atoms were located in a difference map easily and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of the title compound, showing one layer of molecules connected by O—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bondings have been removed for clarity.
3-Ethoxy-4-hydroxybenzaldehyde top
Crystal data top
C9H10O3F(000) = 704
Mr = 166.17Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17141 reflections
a = 13.7352 (6) Åθ = 2.1–27.6°
b = 14.4140 (6) ŵ = 0.10 mm1
c = 8.7890 (4) ÅT = 296 K
β = 100.742 (3)°Block, colourless
V = 1709.55 (13) Å30.50 × 0.50 × 0.40 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2581 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.6°, θmin = 2.1°
Thin–slice ω scansh = 1717
16625 measured reflectionsk = 1818
3934 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.3872P]
where P = (Fo2 + 2Fc2)/3
3934 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H10O3V = 1709.55 (13) Å3
Mr = 166.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.7352 (6) ŵ = 0.10 mm1
b = 14.4140 (6) ÅT = 296 K
c = 8.7890 (4) Å0.50 × 0.50 × 0.40 mm
β = 100.742 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2581 reflections with I > 2σ(I)
16625 measured reflectionsRint = 0.025
3934 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.155All H-atom parameters refined
S = 1.02Δρmax = 0.20 e Å3
3934 reflectionsΔρmin = 0.20 e Å3
297 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12477 (10)0.43352 (12)0.28767 (13)0.0715 (5)
O20.12710 (11)0.36758 (9)1.00143 (14)0.0604 (5)
O30.12391 (10)0.54909 (7)0.94489 (12)0.0548 (4)
C10.12429 (11)0.45393 (11)0.55447 (17)0.0437 (5)
C20.12350 (12)0.51971 (11)0.67073 (17)0.0448 (5)
C30.12434 (11)0.49228 (10)0.82084 (16)0.0410 (4)
C40.12606 (12)0.39763 (11)0.85609 (16)0.0436 (5)
C50.12674 (14)0.33230 (12)0.74025 (19)0.0542 (6)
C60.12612 (13)0.36096 (12)0.59045 (18)0.0501 (5)
C70.12395 (14)0.48538 (14)0.39633 (19)0.0558 (6)
C80.12357 (18)0.64675 (12)0.9186 (2)0.0601 (7)
C90.1244 (2)0.69335 (18)1.0715 (3)0.0746 (9)
O110.37024 (11)0.56574 (12)0.86077 (14)0.0784 (6)
O120.37991 (12)0.63363 (10)0.15095 (15)0.0686 (5)
O130.37825 (10)0.45237 (8)0.20437 (13)0.0568 (4)
C110.37039 (12)0.54556 (11)0.59351 (17)0.0460 (5)
C120.37298 (12)0.48002 (12)0.47729 (18)0.0467 (5)
C130.37476 (11)0.50805 (10)0.32797 (17)0.0424 (5)
C140.37515 (12)0.60323 (11)0.29454 (18)0.0462 (5)
C150.37110 (14)0.66787 (12)0.40983 (19)0.0549 (6)
C160.36854 (13)0.63909 (12)0.5583 (2)0.0524 (6)
C170.37151 (14)0.51450 (16)0.7520 (2)0.0621 (7)
C180.37312 (17)0.35399 (12)0.2254 (2)0.0591 (7)
C190.3821 (2)0.30995 (18)0.0736 (3)0.0810 (10)
H10.1261 (16)0.4088 (19)1.061 (3)0.080 (7)*
H20.1292 (12)0.2659 (16)0.769 (2)0.070 (6)*
H30.1271 (13)0.3143 (15)0.513 (2)0.064 (5)*
H40.1224 (12)0.5864 (15)0.642 (2)0.065 (6)*
H50.0633 (18)0.6778 (17)1.111 (3)0.097 (8)*
H60.1828 (19)0.6754 (18)1.144 (3)0.101 (8)*
H70.1219 (17)0.753 (2)1.052 (3)0.109 (9)*
H80.0602 (16)0.6625 (15)0.843 (3)0.082 (7)*
H90.1861 (16)0.6620 (15)0.876 (2)0.079 (6)*
H100.1194 (14)0.5560 (16)0.378 (2)0.074 (6)*
H110.3722 (13)0.7337 (16)0.381 (2)0.074 (6)*
H120.3666 (13)0.6803 (15)0.638 (2)0.064 (5)*
H130.3747 (12)0.4127 (15)0.507 (2)0.063 (5)*
H140.3786 (17)0.592 (2)0.088 (3)0.095 (8)*
H150.3753 (13)0.4451 (15)0.767 (2)0.071 (6)*
H160.4291 (15)0.3369 (14)0.313 (2)0.075 (6)*
H170.3088 (15)0.3405 (14)0.256 (2)0.071 (6)*
H180.383 (2)0.243 (3)0.097 (4)0.138 (11)*
H190.325 (2)0.329 (2)0.001 (3)0.110 (9)*
H200.445 (2)0.3290 (18)0.042 (3)0.105 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0927 (10)0.0925 (10)0.0316 (6)0.0006 (8)0.0175 (6)0.0063 (6)
O20.1121 (11)0.0403 (7)0.0313 (6)0.0008 (6)0.0198 (6)0.0035 (5)
O30.0986 (9)0.0358 (6)0.0326 (6)0.0012 (6)0.0188 (5)0.0062 (4)
C10.0554 (9)0.0463 (9)0.0305 (7)0.0011 (7)0.0107 (6)0.0016 (6)
C20.0664 (10)0.0357 (8)0.0333 (8)0.0004 (7)0.0121 (7)0.0014 (6)
C30.0587 (9)0.0346 (7)0.0308 (7)0.0008 (6)0.0110 (6)0.0041 (6)
C40.0660 (10)0.0364 (8)0.0297 (7)0.0002 (7)0.0125 (6)0.0016 (6)
C50.0917 (13)0.0337 (8)0.0389 (8)0.0001 (8)0.0169 (8)0.0004 (7)
C60.0776 (11)0.0427 (9)0.0314 (8)0.0006 (8)0.0141 (7)0.0081 (7)
C70.0722 (11)0.0635 (12)0.0327 (8)0.0006 (9)0.0121 (7)0.0011 (8)
C80.0925 (15)0.0341 (9)0.0556 (11)0.0013 (9)0.0187 (10)0.0071 (8)
C90.1020 (19)0.0521 (12)0.0708 (15)0.0004 (12)0.0193 (13)0.0262 (11)
O110.1028 (11)0.0990 (12)0.0365 (7)0.0016 (8)0.0207 (7)0.0071 (7)
O120.1270 (12)0.0454 (7)0.0374 (7)0.0021 (7)0.0254 (7)0.0043 (6)
O130.0963 (9)0.0380 (6)0.0384 (6)0.0026 (6)0.0188 (6)0.0049 (5)
C110.0552 (9)0.0504 (9)0.0332 (8)0.0009 (7)0.0105 (6)0.0028 (7)
C120.0628 (10)0.0391 (9)0.0393 (8)0.0013 (7)0.0122 (7)0.0020 (7)
C130.0564 (9)0.0355 (7)0.0360 (8)0.0001 (6)0.0103 (6)0.0040 (6)
C140.0669 (10)0.0391 (8)0.0336 (8)0.0011 (7)0.0122 (7)0.0009 (6)
C150.0861 (13)0.0370 (8)0.0425 (9)0.0015 (8)0.0147 (8)0.0047 (7)
C160.0704 (11)0.0473 (9)0.0408 (9)0.0010 (8)0.0134 (8)0.0098 (8)
C170.0788 (13)0.0694 (13)0.0402 (9)0.0033 (10)0.0168 (8)0.0015 (9)
C180.0820 (13)0.0348 (9)0.0594 (12)0.0004 (8)0.0103 (10)0.0076 (8)
C190.110 (2)0.0560 (13)0.0776 (16)0.0065 (13)0.0192 (15)0.0263 (12)
Geometric parameters (Å, º) top
O1—C71.215 (2)C8—H81.02 (2)
O2—C41.3464 (19)C8—H91.02 (2)
O3—C31.3644 (17)C9—H60.96 (3)
O3—C81.426 (2)C9—H70.88 (3)
O2—H10.79 (3)C9—H50.99 (3)
O11—C171.211 (2)C11—C121.397 (2)
O12—C141.349 (2)C11—C171.461 (2)
O13—C131.3587 (19)C11—C161.382 (2)
O13—C181.434 (2)C12—C131.378 (2)
O12—H140.81 (3)C13—C141.403 (2)
C1—C71.461 (2)C14—C151.385 (2)
C1—C61.376 (2)C15—C161.376 (2)
C1—C21.396 (2)C18—C191.503 (3)
C2—C31.375 (2)C12—H131.00 (2)
C3—C41.398 (2)C15—H110.98 (2)
C4—C51.388 (2)C16—H120.923 (19)
C5—C61.378 (2)C17—H151.01 (2)
C8—C91.501 (3)C18—H161.012 (19)
C2—H40.99 (2)C18—H170.99 (2)
C5—H20.99 (2)C19—H180.99 (4)
C6—H30.96 (2)C19—H190.96 (3)
C7—H101.03 (2)C19—H200.99 (3)
O1···O2i2.6951 (17)C12···H162.71 (2)
O2···C6ii3.386 (2)C12···H172.822 (19)
O2···O32.6619 (16)C14···H6i2.92 (3)
O2···O1iii2.6951 (17)C16···H16ix2.82 (2)
O3···O22.6619 (16)C18···H132.612 (18)
O11···O12iii2.7117 (19)H1···O1iii2.03 (3)
O12···O11i2.7117 (19)H1···O32.26 (3)
O12···C16iv3.372 (2)H2···H3ii2.44 (3)
O12···O132.6554 (18)H2···O1ii2.88 (2)
O13···O122.6554 (18)H3···O2v2.62 (2)
O1···H32.618 (19)H3···H2v2.44 (3)
O1···H1i2.03 (3)H3···O12.618 (19)
O1···H2v2.88 (2)H4···H7iv2.45 (4)
O2···H19iii2.78 (3)H4···H82.37 (3)
O2···H5vi2.70 (3)H4···H92.35 (3)
O2···H3ii2.62 (2)H4···C82.579 (18)
O3···H12.26 (3)H4···H102.35 (2)
O11···H92.91 (2)H5···O2vi2.70 (3)
O11···H14iii2.02 (3)H5···C4vi2.88 (3)
O11···H11vii2.90 (2)H6···O12iii2.76 (3)
O11···H122.555 (19)H6···C14iii2.92 (3)
O12···H12iv2.69 (2)H7···H4vii2.45 (4)
O12···H6i2.76 (3)H8···H42.37 (3)
O13···H142.26 (3)H8···C22.79 (2)
C1···C113.586 (2)H9···H42.35 (3)
C2···C113.600 (2)H9···O112.91 (2)
C2···C173.349 (3)H9···C22.76 (2)
C2···C7viii3.340 (3)H10···H42.35 (2)
C3···C173.572 (2)H11···O11iv2.90 (2)
C3···C7viii3.599 (2)H11···H12iv2.46 (3)
C6···O2v3.386 (2)H12···O112.555 (19)
C7···C2viii3.340 (3)H12···O12vii2.69 (2)
C7···C123.362 (3)H12···H11vii2.46 (3)
C7···C3viii3.599 (2)H13···C182.612 (18)
C11···C23.600 (2)H13···H152.33 (2)
C11···C13.586 (2)H13···H162.27 (3)
C11···C13ix3.525 (2)H13···H172.46 (3)
C12···C12ix3.485 (2)H13···H18ii2.38 (5)
C12···C73.362 (3)H14···O11i2.02 (3)
C12···C13ix3.571 (2)H14···O132.26 (3)
C13···C12ix3.571 (2)H15···H132.33 (2)
C13···C11ix3.525 (2)H16···C122.71 (2)
C16···O12vii3.372 (2)H16···H132.27 (3)
C17···C33.572 (2)H16···C16ix2.82 (2)
C17···C23.349 (3)H17···C122.822 (19)
C2···H82.79 (2)H17···H132.46 (3)
C2···H92.76 (2)H18···H13v2.38 (5)
C4···H19iii2.96 (3)H19···O2i2.78 (3)
C4···H5vi2.88 (3)H19···C4i2.96 (3)
C8···H42.579 (18)
C3—O3—C8117.59 (12)H5—C9—H6111 (2)
C4—O2—H1112.7 (19)C8—C9—H5110.3 (15)
C13—O13—C18118.12 (12)C12—C11—C17119.54 (16)
C14—O12—H14113 (2)C16—C11—C17120.59 (16)
C6—C1—C7121.16 (15)C12—C11—C16119.86 (14)
C2—C1—C7119.12 (15)C11—C12—C13120.38 (15)
C2—C1—C6119.72 (14)O13—C13—C14114.08 (13)
C1—C2—C3120.48 (14)C12—C13—C14119.18 (14)
C2—C3—C4119.33 (13)O13—C13—C12126.72 (14)
O3—C3—C4114.26 (12)O12—C14—C15118.78 (15)
O3—C3—C2126.41 (13)C13—C14—C15120.14 (14)
O2—C4—C5118.51 (14)O12—C14—C13121.08 (14)
C3—C4—C5120.10 (13)C14—C15—C16120.17 (16)
O2—C4—C3121.39 (13)C11—C16—C15120.24 (16)
C4—C5—C6119.84 (16)O11—C17—C11124.5 (2)
C1—C6—C5120.53 (15)O13—C18—C19106.81 (16)
O1—C7—C1123.93 (18)C11—C12—H13117.8 (10)
O3—C8—C9107.30 (15)C13—C12—H13121.8 (10)
C1—C2—H4118.2 (10)C14—C15—H11117.1 (10)
C3—C2—H4121.3 (10)C16—C15—H11122.7 (10)
C4—C5—H2118.3 (10)C11—C16—H12117.4 (12)
C6—C5—H2121.9 (10)C15—C16—H12122.4 (12)
C1—C6—H3121.5 (12)O11—C17—H15120.6 (10)
C5—C6—H3118.0 (12)C11—C17—H15114.8 (10)
C1—C7—H10116.4 (10)O13—C18—H16106.9 (12)
O1—C7—H10119.6 (10)O13—C18—H17107.3 (12)
O3—C8—H8107.6 (12)C19—C18—H16113.3 (11)
C9—C8—H9111.4 (11)C19—C18—H17112.5 (11)
O3—C8—H9107.1 (12)H16—C18—H17109.6 (15)
C9—C8—H8110.4 (14)C18—C19—H18103 (2)
H8—C8—H9112.8 (17)C18—C19—H19107.0 (17)
C8—C9—H6109.8 (16)C18—C19—H20110.5 (15)
C8—C9—H7105.7 (17)H18—C19—H19113 (2)
H5—C9—H7107 (2)H18—C19—H20111 (2)
H6—C9—H7113 (2)H19—C19—H20112 (2)
C8—O3—C3—C4179.15 (16)C3—C4—C5—C60.3 (3)
C8—O3—C3—C20.7 (3)O2—C4—C5—C6179.73 (17)
C3—O3—C8—C9179.32 (17)C4—C5—C6—C10.4 (3)
C13—O13—C18—C19178.06 (17)C16—C11—C12—C130.7 (3)
C18—O13—C13—C14176.92 (16)C12—C11—C17—O11179.41 (18)
C18—O13—C13—C124.4 (3)C16—C11—C17—O110.5 (3)
C6—C1—C2—C30.1 (2)C17—C11—C16—C15177.65 (17)
C7—C1—C6—C5179.79 (17)C12—C11—C16—C151.2 (3)
C2—C1—C6—C50.3 (3)C17—C11—C12—C13178.19 (16)
C2—C1—C7—O1179.85 (18)C11—C12—C13—O13179.34 (16)
C7—C1—C2—C3179.64 (16)C11—C12—C13—C140.8 (2)
C6—C1—C7—O10.3 (3)O13—C13—C14—C15179.53 (16)
C1—C2—C3—C40.0 (2)C12—C13—C14—O12177.97 (16)
C1—C2—C3—O3179.87 (16)C12—C13—C14—C151.7 (2)
O3—C3—C4—O20.1 (2)O13—C13—C14—O120.8 (2)
C2—C3—C4—O2179.89 (15)C13—C14—C15—C161.2 (3)
O3—C3—C4—C5179.95 (16)O12—C14—C15—C16178.48 (17)
C2—C3—C4—C50.1 (2)C14—C15—C16—C110.3 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z1/2; (vi) x, y+1, z+2; (vii) x, y+3/2, z+1/2; (viii) x, y+1, z+1; (ix) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O1iii0.79 (3)2.03 (3)2.6951 (17)142 (3)
O2—H1···O30.79 (3)2.26 (3)2.6619 (16)112 (2)
O12—H14···O11i0.81 (3)2.02 (3)2.7117 (19)143 (3)
O12—H14···O130.81 (3)2.26 (3)2.6554 (18)111 (2)
Symmetry codes: (i) x, y, z1; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H10O3
Mr166.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.7352 (6), 14.4140 (6), 8.7890 (4)
β (°) 100.742 (3)
V3)1709.55 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16625, 3934, 2581
Rint0.025
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.155, 1.02
No. of reflections3934
No. of parameters297
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O1i0.79 (3)2.03 (3)2.6951 (17)142 (3)
O2—H1···O30.79 (3)2.26 (3)2.6619 (16)112 (2)
O12—H14···O11ii0.81 (3)2.02 (3)2.7117 (19)143 (3)
O12—H14···O130.81 (3)2.26 (3)2.6554 (18)111 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Acknowledgements

The authors thank Professor Tao Zeng for invaluable advice.

References

First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGradeff, P. S. & Murayama, S. T. (1982). US Patent No. 4 351 962.  Google Scholar
First citationLi, Y. (2008). Chin. J. Struct. Chem. 27, 1089-1092.  CAS Google Scholar
First citationOhta, T., Watanabe, M., Watanabe, K., Shirasu, Y. & Kada, T. (1986). Food Chem. Toxicol. 24, 51–54.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds